Integer quantum Hall effect and topological phase transitions in silicene
We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0, ±2, ±6,…, an...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute for Condensed Matter Physics
2017-12-01
|
Series: | Condensed Matter Physics |
Subjects: | |
Online Access: | https://doi.org/10.5488/CMP.20.43701 |
id |
doaj-30e2a628c8dd43228eac86111f61fb1d |
---|---|
record_format |
Article |
spelling |
doaj-30e2a628c8dd43228eac86111f61fb1d2020-11-24T22:50:43ZengInstitute for Condensed Matter PhysicsCondensed Matter Physics1607-324X2224-90792017-12-012044370110.5488/CMP.20.43701Integer quantum Hall effect and topological phase transitions in silicene Y.L. LiuG.X. LuoN. XuH.Y. TianC.D. RenWe numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0, ±2, ±6,…, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus. https://doi.org/10.5488/CMP.20.43701quantum Hall effectsilicenequantum phase transitions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Y.L. Liu G.X. Luo N. Xu H.Y. Tian C.D. Ren |
spellingShingle |
Y.L. Liu G.X. Luo N. Xu H.Y. Tian C.D. Ren Integer quantum Hall effect and topological phase transitions in silicene Condensed Matter Physics quantum Hall effect silicene quantum phase transitions |
author_facet |
Y.L. Liu G.X. Luo N. Xu H.Y. Tian C.D. Ren |
author_sort |
Y.L. Liu |
title |
Integer quantum Hall effect and topological phase transitions in silicene |
title_short |
Integer quantum Hall effect and topological phase transitions in silicene |
title_full |
Integer quantum Hall effect and topological phase transitions in silicene |
title_fullStr |
Integer quantum Hall effect and topological phase transitions in silicene |
title_full_unstemmed |
Integer quantum Hall effect and topological phase transitions in silicene |
title_sort |
integer quantum hall effect and topological phase transitions in silicene |
publisher |
Institute for Condensed Matter Physics |
series |
Condensed Matter Physics |
issn |
1607-324X 2224-9079 |
publishDate |
2017-12-01 |
description |
We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0, ±2, ±6,…, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus. |
topic |
quantum Hall effect silicene quantum phase transitions |
url |
https://doi.org/10.5488/CMP.20.43701 |
work_keys_str_mv |
AT ylliu integerquantumhalleffectandtopologicalphasetransitionsinsilicene AT gxluo integerquantumhalleffectandtopologicalphasetransitionsinsilicene AT nxu integerquantumhalleffectandtopologicalphasetransitionsinsilicene AT hytian integerquantumhalleffectandtopologicalphasetransitionsinsilicene AT cdren integerquantumhalleffectandtopologicalphasetransitionsinsilicene |
_version_ |
1725671529013837824 |