$$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s

Abstract We reanalyse the ratio $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model (SM) using most recent hadronic matrix elements from the RBC-UKQCD collaboration in combination with most important NNLO QCD corrections to electroweak penguin contributions and the isospin-breaking correc...

Full description

Bibliographic Details
Main Authors: Jason Aebischer, Christoph Bobeth, Andrzej J. Buras
Format: Article
Language:English
Published: SpringerOpen 2020-08-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-8267-1
id doaj-30cc078367a7434d820e70e4e1829230
record_format Article
spelling doaj-30cc078367a7434d820e70e4e18292302020-11-25T03:17:38ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522020-08-0180811510.1140/epjc/s10052-020-8267-1$$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020sJason Aebischer0Christoph Bobeth1Andrzej J. Buras2Department of Physics, University of California at San DiegoPhysik Department, TU MünchenTUM Institute for Advanced StudyAbstract We reanalyse the ratio $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model (SM) using most recent hadronic matrix elements from the RBC-UKQCD collaboration in combination with most important NNLO QCD corrections to electroweak penguin contributions and the isospin-breaking corrections. We illustrate the importance of the latter by using their latest estimate from chiral perturbation theory (ChPT) based on the octet approximation for lowest-lying mesons and a very recent estimate in the nonet scheme that takes into account the contribution of $$\eta _0$$ η0 . We find $$(\varepsilon '/\varepsilon )^{(8)}_\text {SM} = (17.4 \pm 6.1) \times 10^{-4}$$ (ε′/ε)SM(8)=(17.4±6.1)×10-4 and $$(\varepsilon '/\varepsilon )^{(9)}_\text {SM} = (13.9 \pm 5.2) \times 10^{-4}$$ (ε′/ε)SM(9)=(13.9±5.2)×10-4 , respectively. Despite a very good agreement with the measured value $$(\varepsilon '/\varepsilon )_\text {exp} = (16.6 \pm 2.3) \times 10^{-4}$$ (ε′/ε)exp=(16.6±2.3)×10-4 , the large error in $$(\varepsilon '/\varepsilon )_\text {SM}$$ (ε′/ε)SM still leaves room for significant new physics (BSM) contributions to this ratio. We update the 2018 master formula for $$(\varepsilon '/\varepsilon )_\text {BSM}$$ (ε′/ε)BSM valid in any extension beyond the SM without additional light degrees of freedom. We provide new values of the penguin parameters $$B_6^{(1/2)}(\mu )$$ B6(1/2)(μ) and $$B_8^{(3/2)}(\mu )$$ B8(3/2)(μ) at the $$\mu $$ μ -scales used by the RBC-UKQCD collaboration and at lower scales $$\mathcal {O}(1\, \text {GeV})$$ O(1GeV) used by ChPT and Dual QCD (DQCD). We present semi-analytic formulae for $$(\varepsilon '/\varepsilon )_\text {SM}$$ (ε′/ε)SM in terms of these parameters and $$\hat{\Omega }_\text {eff}$$ Ω^eff that summarizes isospin-breaking corrections to this ratio. We stress the importance of lattice calculations of the $$\mathcal {O}(\alpha _{\text {em}})$$ O(αem) contributions to the hadronic matrix elements necessary for the removal of renormalization scheme dependence at $$\mathcal {O}(\alpha _{\text {em}})$$ O(αem) in the present analyses of $$\varepsilon '/\varepsilon $$ ε′/ε .http://link.springer.com/article/10.1140/epjc/s10052-020-8267-1
collection DOAJ
language English
format Article
sources DOAJ
author Jason Aebischer
Christoph Bobeth
Andrzej J. Buras
spellingShingle Jason Aebischer
Christoph Bobeth
Andrzej J. Buras
$$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s
European Physical Journal C: Particles and Fields
author_facet Jason Aebischer
Christoph Bobeth
Andrzej J. Buras
author_sort Jason Aebischer
title $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s
title_short $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s
title_full $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s
title_fullStr $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s
title_full_unstemmed $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model at the Dawn of the 2020s
title_sort $$\varepsilon '/\varepsilon $$ ε′/ε in the standard model at the dawn of the 2020s
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2020-08-01
description Abstract We reanalyse the ratio $$\varepsilon '/\varepsilon $$ ε′/ε in the Standard Model (SM) using most recent hadronic matrix elements from the RBC-UKQCD collaboration in combination with most important NNLO QCD corrections to electroweak penguin contributions and the isospin-breaking corrections. We illustrate the importance of the latter by using their latest estimate from chiral perturbation theory (ChPT) based on the octet approximation for lowest-lying mesons and a very recent estimate in the nonet scheme that takes into account the contribution of $$\eta _0$$ η0 . We find $$(\varepsilon '/\varepsilon )^{(8)}_\text {SM} = (17.4 \pm 6.1) \times 10^{-4}$$ (ε′/ε)SM(8)=(17.4±6.1)×10-4 and $$(\varepsilon '/\varepsilon )^{(9)}_\text {SM} = (13.9 \pm 5.2) \times 10^{-4}$$ (ε′/ε)SM(9)=(13.9±5.2)×10-4 , respectively. Despite a very good agreement with the measured value $$(\varepsilon '/\varepsilon )_\text {exp} = (16.6 \pm 2.3) \times 10^{-4}$$ (ε′/ε)exp=(16.6±2.3)×10-4 , the large error in $$(\varepsilon '/\varepsilon )_\text {SM}$$ (ε′/ε)SM still leaves room for significant new physics (BSM) contributions to this ratio. We update the 2018 master formula for $$(\varepsilon '/\varepsilon )_\text {BSM}$$ (ε′/ε)BSM valid in any extension beyond the SM without additional light degrees of freedom. We provide new values of the penguin parameters $$B_6^{(1/2)}(\mu )$$ B6(1/2)(μ) and $$B_8^{(3/2)}(\mu )$$ B8(3/2)(μ) at the $$\mu $$ μ -scales used by the RBC-UKQCD collaboration and at lower scales $$\mathcal {O}(1\, \text {GeV})$$ O(1GeV) used by ChPT and Dual QCD (DQCD). We present semi-analytic formulae for $$(\varepsilon '/\varepsilon )_\text {SM}$$ (ε′/ε)SM in terms of these parameters and $$\hat{\Omega }_\text {eff}$$ Ω^eff that summarizes isospin-breaking corrections to this ratio. We stress the importance of lattice calculations of the $$\mathcal {O}(\alpha _{\text {em}})$$ O(αem) contributions to the hadronic matrix elements necessary for the removal of renormalization scheme dependence at $$\mathcal {O}(\alpha _{\text {em}})$$ O(αem) in the present analyses of $$\varepsilon '/\varepsilon $$ ε′/ε .
url http://link.springer.com/article/10.1140/epjc/s10052-020-8267-1
work_keys_str_mv AT jasonaebischer varepsilonvarepsiloneeinthestandardmodelatthedawnofthe2020s
AT christophbobeth varepsilonvarepsiloneeinthestandardmodelatthedawnofthe2020s
AT andrzejjburas varepsilonvarepsiloneeinthestandardmodelatthedawnofthe2020s
_version_ 1724630861578502144