SGTA Recognizes a Noncanonical Ubiquitin-like Domain in the Bag6-Ubl4A-Trc35 Complex to Promote Endoplasmic Reticulum-Associated Degradation

Elimination of aberrantly folded polypeptides from the endoplasmic reticulum (ER) by the ER-associated degradation (ERAD) system promotes cell survival under stress conditions. This quality control mechanism requires movement of misfolded proteins across the ER membrane for targeting to the cytosol...

Full description

Bibliographic Details
Main Authors: Yue Xu, Mengli Cai, Yingying Yang, Lan Huang, Yihong Ye
Format: Article
Language:English
Published: Elsevier 2012-12-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124712003919
Description
Summary:Elimination of aberrantly folded polypeptides from the endoplasmic reticulum (ER) by the ER-associated degradation (ERAD) system promotes cell survival under stress conditions. This quality control mechanism requires movement of misfolded proteins across the ER membrane for targeting to the cytosolic proteasome, a process facilitated by a “holdase” complex, consisting of Bag6 and the cofactors Ubl4A and Trc35. This multiprotein complex also participates in several other protein quality control processes. Here, we report SGTA as a component of the Bag6 system, which cooperates with Bag6 to channel dislocated ERAD substrates that are prone to aggregation. Using nuclear magnetic resonance spectroscopy and biochemical assays, we demonstrate that SGTA contains a noncanonical ubiquitin-like-binding domain that interacts specifically with an unconventional ubiquitin-like protein/domain in Ubl4A at least in part via electrostatics. This interaction helps recruit SGTA to Bag6, enhances substrate loading to Bag6, and thus prevents the formation of nondegradable protein aggregates in ERAD.
ISSN:2211-1247