Response of Common Bean Genotypes Grown in Soil with Normal or Limited Moisture, with Special Reference to the Nutrient Phosphorus

Drought and phosphorus deficiency in the soil are the major production limitations of common beans (Phaseolus vulgaris L.) in Sub-Saharan Africa. This study measured the yield responses of low phosphorus-tolerant common beans to drought stress. A field experiment was conducted under two drought cond...

Full description

Bibliographic Details
Main Authors: Margaret Namugwanya, John Stephen Tenywa, Erasmus Otabbong
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Agronomy
Subjects:
Online Access:http://www.mdpi.com/2073-4395/8/8/132
Description
Summary:Drought and phosphorus deficiency in the soil are the major production limitations of common beans (Phaseolus vulgaris L.) in Sub-Saharan Africa. This study measured the yield responses of low phosphorus-tolerant common beans to drought stress. A field experiment was conducted under two drought conditions codenamed, non-drought-stress (NDS) and drought-stress (DS). The former was located at Mukono Zonal Agricultural Research and Development Institute (MUZARDI) in Mukono District, characterised by rainfall of more than 400 mm season−1. The latter was situated at Wabinyonyi in Nakasongola District, characterised by less than 300 mm season−1; both in central Uganda. Treatments included the two study conditions (NDS and DS); and four test bean genotypes, AFR703-1, AFR 708, JESCA, and MCM 2001, against a local check, K131. A water deficit of 156 mm season−1 was observed in the DS site causing a drought intensity index (DII) of 40%. That pattern contrasted considerably in the NDS site where the actual rainfall did not significantly (p > 0.05) vary from the required water by the bean plant. Whereas genotypes AFR703-1 and AFR708 out-yielded the local check in NDS by 213 and 681 kg ha−1, respectively; their grain yield harvested was comparable to the control yield in DS. When grown under DS, low P-tolerant beans, especially the AFR703-1 and AFR708, survived drought stress through faster development by reducing the number of days to flower, reach physiological maturity and develop seeds. AFR703-1 and AFR708 sufficiently withstand drought stress, and are therefore recommended for inclusion in cropping systems that are characteristically constrained by the combined soils’ P deficiency and/or drought.
ISSN:2073-4395