Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Undergro...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/13/14/3512 |
id |
doaj-308d1324f20541c8aa97b7cf016d5832 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vasileios Kitsikoudis Pierre Archambeau Benjamin Dewals Estanislao Pujades Philippe Orban Alain Dassargues Michel Pirotton Sebastien Erpicum |
spellingShingle |
Vasileios Kitsikoudis Pierre Archambeau Benjamin Dewals Estanislao Pujades Philippe Orban Alain Dassargues Michel Pirotton Sebastien Erpicum Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Energies energy storage underground pumped storage hydropower renewable energy numerical modeling water transients |
author_facet |
Vasileios Kitsikoudis Pierre Archambeau Benjamin Dewals Estanislao Pujades Philippe Orban Alain Dassargues Michel Pirotton Sebastien Erpicum |
author_sort |
Vasileios Kitsikoudis |
title |
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics |
title_short |
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics |
title_full |
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics |
title_fullStr |
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics |
title_full_unstemmed |
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics |
title_sort |
underground pumped-storage hydropower (upsh) at the martelange mine (belgium): underground reservoir hydraulics |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2020-07-01 |
description |
The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems. The present study considers an abandoned slate mine in Martelange in Southeast Belgium as the lower, underground, reservoir of an UPSH plant and analyzes its hydraulic behavior. The abandoned slate mine consists of nine large chambers with a total volume of about 550,000 m<sup>3</sup>, whereas the maximum pumping and turbining discharges are 22.2 m<sup>3</sup>/s. The chambers have different size and they are interconnected with small galleries with limited discharge capacity that may hinder the flow exchange between adjacent chambers. The objective of this study is to quantify the effect of the connecting galleries cross-section and the chambers adequate aeration on the water level variations in the underground reservoir, considering a possible operation scenario build upon current electricity prices and using an original hydraulic modelling approach. The results highlight the importance of adequate ventilation of the chambers in order to reach the same equilibrium water level across all communicating chambers. For fully aerated chambers, the connecting galleries should have a total cross-sectional area of at least 15 m<sup>2</sup> to allow water flow through them without significant restrictions and maintain similar water level at all times. Partially aerated chambers do not attain the same water level because of the entrapped air; however, the maximum water level differences between adjacent chambers remain relatively invariant when the total cross-sectional area of the connecting galleries is greater than 8 m<sup>2</sup>. The variation of hydraulic roughness of the connecting galleries affects the water exchange through small connecting galleries but is not very influential on water moving through galleries with large cross-sections. |
topic |
energy storage underground pumped storage hydropower renewable energy numerical modeling water transients |
url |
https://www.mdpi.com/1996-1073/13/14/3512 |
work_keys_str_mv |
AT vasileioskitsikoudis undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT pierrearchambeau undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT benjamindewals undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT estanislaopujades undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT philippeorban undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT alaindassargues undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT michelpirotton undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics AT sebastienerpicum undergroundpumpedstoragehydropowerupshatthemartelangeminebelgiumundergroundreservoirhydraulics |
_version_ |
1724502278015025152 |
spelling |
doaj-308d1324f20541c8aa97b7cf016d58322020-11-25T03:47:21ZengMDPI AGEnergies1996-10732020-07-01133512351210.3390/en13143512Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir HydraulicsVasileios Kitsikoudis0Pierre Archambeau1Benjamin Dewals2Estanislao Pujades3Philippe Orban4Alain Dassargues5Michel Pirotton6Sebastien Erpicum7Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumHydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumHydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumDepartment of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, GermanyHydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumHydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumHydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumHydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, BelgiumThe intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems. The present study considers an abandoned slate mine in Martelange in Southeast Belgium as the lower, underground, reservoir of an UPSH plant and analyzes its hydraulic behavior. The abandoned slate mine consists of nine large chambers with a total volume of about 550,000 m<sup>3</sup>, whereas the maximum pumping and turbining discharges are 22.2 m<sup>3</sup>/s. The chambers have different size and they are interconnected with small galleries with limited discharge capacity that may hinder the flow exchange between adjacent chambers. The objective of this study is to quantify the effect of the connecting galleries cross-section and the chambers adequate aeration on the water level variations in the underground reservoir, considering a possible operation scenario build upon current electricity prices and using an original hydraulic modelling approach. The results highlight the importance of adequate ventilation of the chambers in order to reach the same equilibrium water level across all communicating chambers. For fully aerated chambers, the connecting galleries should have a total cross-sectional area of at least 15 m<sup>2</sup> to allow water flow through them without significant restrictions and maintain similar water level at all times. Partially aerated chambers do not attain the same water level because of the entrapped air; however, the maximum water level differences between adjacent chambers remain relatively invariant when the total cross-sectional area of the connecting galleries is greater than 8 m<sup>2</sup>. The variation of hydraulic roughness of the connecting galleries affects the water exchange through small connecting galleries but is not very influential on water moving through galleries with large cross-sections.https://www.mdpi.com/1996-1073/13/14/3512energy storageunderground pumped storage hydropowerrenewable energynumerical modelingwater transients |