On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan
<p>Let <span class="math"><em>G</em></span> be a connected graph and let <span class="math"><em>u</em>, <em>v</em></span> <span class="math"> ∈ </span> <span class="math"><e...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
InaCombS; Universitas Jember; dan Universitas Indonesia
2018-12-01
|
Series: | Indonesian Journal of Combinatorics |
Online Access: | http://www.ijc.or.id/index.php/ijc/article/view/56 |
id |
doaj-30806f65ed594e91829233cbbf6f958b |
---|---|
record_format |
Article |
spelling |
doaj-30806f65ed594e91829233cbbf6f958b2020-11-24T23:44:28ZengInaCombS; Universitas Jember; dan Universitas IndonesiaIndonesian Journal of Combinatorics2541-22052018-12-0122889610.19184/ijc.2018.2.2.420On the local metric dimension of t-fold wheel, Pn o Km, and generalized fanRokhana Ayu Solekhah0Tri Atmojo Kusmayadi1Universitas Sebelas Maret, SurakartaUniversitas Sebelas Maret, Surakarta<p>Let <span class="math"><em>G</em></span> be a connected graph and let <span class="math"><em>u</em>, <em>v</em></span> <span class="math"> ∈ </span> <span class="math"><em>V</em>(<em>G</em>)</span>. For an ordered set <span class="math"><em>W</em> = {<em>w</em><sub>1</sub>, <em>w</em><sub>2</sub>, ..., <em>w</em><sub><em>n</em></sub>}</span> of <span class="math"><em>n</em></span> distinct vertices in <span class="math"><em>G</em></span>, the representation of a vertex <span class="math"><em>v</em></span> of <span class="math"><em>G</em></span> with respect to <span class="math"><em>W</em></span> is the <span class="math"><em>n</em></span>-vector <span class="math"><em>r</em>(<em>v</em>∣<em>W</em>) = (<em>d</em>(<em>v</em>, <em>w</em><sub>1</sub>), <em>d</em>(<em>v</em>, <em>w</em><sub>2</sub>), ..., </span> <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>n</em></sub>))</span>, where <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>i</em></sub>)</span> is the distance between <span class="math"><em>v</em></span> and <span class="math"><em>w</em><sub><em>i</em></sub></span> for <span class="math">1 ≤ <em>i</em> ≤ <em>n</em></span>. The set <span class="math"><em>W</em></span> is a local metric set of <span class="math"><em>G</em></span> if <span class="math"><em>r</em>(<em>u</em> ∣ <em>W</em>) ≠ <em>r</em>(<em>v</em> ∣ <em>W</em>)</span> for every pair <span class="math"><em>u</em>, <em>v</em></span> of adjacent vertices of <span class="math"><em>G</em></span>. The local metric set of <span class="math"><em>G</em></span> with minimum cardinality is called a local metric basis for <span class="math"><em>G</em></span> and its cardinality is called a local metric dimension, denoted by <span class="math"><em>l</em><em>m</em><em>d</em>(<em>G</em>)</span>. In this paper we determine the local metric dimension of a <span class="math"><em>t</em></span>-fold wheel graph, <span class="math"><em>P</em><sub><em>n</em></sub></span> <span class="math"> ⊙ </span> <span class="math"><em>K</em><sub><em>m</em></sub></span> graph, and generalized fan graph.</p>http://www.ijc.or.id/index.php/ijc/article/view/56 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rokhana Ayu Solekhah Tri Atmojo Kusmayadi |
spellingShingle |
Rokhana Ayu Solekhah Tri Atmojo Kusmayadi On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan Indonesian Journal of Combinatorics |
author_facet |
Rokhana Ayu Solekhah Tri Atmojo Kusmayadi |
author_sort |
Rokhana Ayu Solekhah |
title |
On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan |
title_short |
On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan |
title_full |
On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan |
title_fullStr |
On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan |
title_full_unstemmed |
On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan |
title_sort |
on the local metric dimension of t-fold wheel, pn o km, and generalized fan |
publisher |
InaCombS; Universitas Jember; dan Universitas Indonesia |
series |
Indonesian Journal of Combinatorics |
issn |
2541-2205 |
publishDate |
2018-12-01 |
description |
<p>Let <span class="math"><em>G</em></span> be a connected graph and let <span class="math"><em>u</em>, <em>v</em></span> <span class="math"> ∈ </span> <span class="math"><em>V</em>(<em>G</em>)</span>. For an ordered set <span class="math"><em>W</em> = {<em>w</em><sub>1</sub>, <em>w</em><sub>2</sub>, ..., <em>w</em><sub><em>n</em></sub>}</span> of <span class="math"><em>n</em></span> distinct vertices in <span class="math"><em>G</em></span>, the representation of a vertex <span class="math"><em>v</em></span> of <span class="math"><em>G</em></span> with respect to <span class="math"><em>W</em></span> is the <span class="math"><em>n</em></span>-vector <span class="math"><em>r</em>(<em>v</em>∣<em>W</em>) = (<em>d</em>(<em>v</em>, <em>w</em><sub>1</sub>), <em>d</em>(<em>v</em>, <em>w</em><sub>2</sub>), ..., </span> <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>n</em></sub>))</span>, where <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>i</em></sub>)</span> is the distance between <span class="math"><em>v</em></span> and <span class="math"><em>w</em><sub><em>i</em></sub></span> for <span class="math">1 ≤ <em>i</em> ≤ <em>n</em></span>. The set <span class="math"><em>W</em></span> is a local metric set of <span class="math"><em>G</em></span> if <span class="math"><em>r</em>(<em>u</em> ∣ <em>W</em>) ≠ <em>r</em>(<em>v</em> ∣ <em>W</em>)</span> for every pair <span class="math"><em>u</em>, <em>v</em></span> of adjacent vertices of <span class="math"><em>G</em></span>. The local metric set of <span class="math"><em>G</em></span> with minimum cardinality is called a local metric basis for <span class="math"><em>G</em></span> and its cardinality is called a local metric dimension, denoted by <span class="math"><em>l</em><em>m</em><em>d</em>(<em>G</em>)</span>. In this paper we determine the local metric dimension of a <span class="math"><em>t</em></span>-fold wheel graph, <span class="math"><em>P</em><sub><em>n</em></sub></span> <span class="math"> ⊙ </span> <span class="math"><em>K</em><sub><em>m</em></sub></span> graph, and generalized fan graph.</p> |
url |
http://www.ijc.or.id/index.php/ijc/article/view/56 |
work_keys_str_mv |
AT rokhanaayusolekhah onthelocalmetricdimensionoftfoldwheelpnokmandgeneralizedfan AT triatmojokusmayadi onthelocalmetricdimensionoftfoldwheelpnokmandgeneralizedfan |
_version_ |
1725498222930034688 |