Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.
Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we f...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4221193?pdf=render |
id |
doaj-307fde7b7666495aa3a784648b010970 |
---|---|
record_format |
Article |
spelling |
doaj-307fde7b7666495aa3a784648b0109702020-11-25T02:40:11ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01911e11189010.1371/journal.pone.0111890Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.Yingkui LiJingjuan LiaoHuadong GuoZewen LiuGuozhuang ShenMost glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.http://europepmc.org/articles/PMC4221193?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yingkui Li Jingjuan Liao Huadong Guo Zewen Liu Guozhuang Shen |
spellingShingle |
Yingkui Li Jingjuan Liao Huadong Guo Zewen Liu Guozhuang Shen Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010. PLoS ONE |
author_facet |
Yingkui Li Jingjuan Liao Huadong Guo Zewen Liu Guozhuang Shen |
author_sort |
Yingkui Li |
title |
Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010. |
title_short |
Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010. |
title_full |
Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010. |
title_fullStr |
Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010. |
title_full_unstemmed |
Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010. |
title_sort |
patterns and potential drivers of dramatic changes in tibetan lakes, 1972-2010. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia. |
url |
http://europepmc.org/articles/PMC4221193?pdf=render |
work_keys_str_mv |
AT yingkuili patternsandpotentialdriversofdramaticchangesintibetanlakes19722010 AT jingjuanliao patternsandpotentialdriversofdramaticchangesintibetanlakes19722010 AT huadongguo patternsandpotentialdriversofdramaticchangesintibetanlakes19722010 AT zewenliu patternsandpotentialdriversofdramaticchangesintibetanlakes19722010 AT guozhuangshen patternsandpotentialdriversofdramaticchangesintibetanlakes19722010 |
_version_ |
1724782495887523840 |