Periods for holomorphic maps via Lefschetz numbers
We characterise the set of fixed points of a class of holomorphic maps on complex manifolds with a prescribed homology. Our main tool is the Lefschetz number and the action of maps on the first homology group.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2005-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/AAA.2005.575 |
id |
doaj-307de00815244cb8a48e2c46094bec17 |
---|---|
record_format |
Article |
spelling |
doaj-307de00815244cb8a48e2c46094bec172020-11-25T00:47:52ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092005-01-012005657557910.1155/AAA.2005.575Periods for holomorphic maps via Lefschetz numbersJaume Llibre0Michael Todd1Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, SpainDepartment of Mathematics and Statistics, University of Surrey, Surrey, Guildford GU2 7XH, UKWe characterise the set of fixed points of a class of holomorphic maps on complex manifolds with a prescribed homology. Our main tool is the Lefschetz number and the action of maps on the first homology group.http://dx.doi.org/10.1155/AAA.2005.575 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jaume Llibre Michael Todd |
spellingShingle |
Jaume Llibre Michael Todd Periods for holomorphic maps via Lefschetz numbers Abstract and Applied Analysis |
author_facet |
Jaume Llibre Michael Todd |
author_sort |
Jaume Llibre |
title |
Periods for holomorphic maps via Lefschetz numbers |
title_short |
Periods for holomorphic maps via Lefschetz numbers |
title_full |
Periods for holomorphic maps via Lefschetz numbers |
title_fullStr |
Periods for holomorphic maps via Lefschetz numbers |
title_full_unstemmed |
Periods for holomorphic maps via Lefschetz numbers |
title_sort |
periods for holomorphic maps via lefschetz numbers |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2005-01-01 |
description |
We characterise the set of fixed points of a class of holomorphic maps on complex manifolds with a prescribed homology. Our main tool is the Lefschetz number and the action of maps on the first homology group. |
url |
http://dx.doi.org/10.1155/AAA.2005.575 |
work_keys_str_mv |
AT jaumellibre periodsforholomorphicmapsvialefschetznumbers AT michaeltodd periodsforholomorphicmapsvialefschetznumbers |
_version_ |
1725258048885227520 |