Periods for holomorphic maps via Lefschetz numbers

We characterise the set of fixed points of a class of holomorphic maps on complex manifolds with a prescribed homology. Our main tool is the Lefschetz number and the action of maps on the first homology group.

Bibliographic Details
Main Authors: Jaume Llibre, Michael Todd
Format: Article
Language:English
Published: Hindawi Limited 2005-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/AAA.2005.575
id doaj-307de00815244cb8a48e2c46094bec17
record_format Article
spelling doaj-307de00815244cb8a48e2c46094bec172020-11-25T00:47:52ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092005-01-012005657557910.1155/AAA.2005.575Periods for holomorphic maps via Lefschetz numbersJaume Llibre0Michael Todd1Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, SpainDepartment of Mathematics and Statistics, University of Surrey, Surrey, Guildford GU2 7XH, UKWe characterise the set of fixed points of a class of holomorphic maps on complex manifolds with a prescribed homology. Our main tool is the Lefschetz number and the action of maps on the first homology group.http://dx.doi.org/10.1155/AAA.2005.575
collection DOAJ
language English
format Article
sources DOAJ
author Jaume Llibre
Michael Todd
spellingShingle Jaume Llibre
Michael Todd
Periods for holomorphic maps via Lefschetz numbers
Abstract and Applied Analysis
author_facet Jaume Llibre
Michael Todd
author_sort Jaume Llibre
title Periods for holomorphic maps via Lefschetz numbers
title_short Periods for holomorphic maps via Lefschetz numbers
title_full Periods for holomorphic maps via Lefschetz numbers
title_fullStr Periods for holomorphic maps via Lefschetz numbers
title_full_unstemmed Periods for holomorphic maps via Lefschetz numbers
title_sort periods for holomorphic maps via lefschetz numbers
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2005-01-01
description We characterise the set of fixed points of a class of holomorphic maps on complex manifolds with a prescribed homology. Our main tool is the Lefschetz number and the action of maps on the first homology group.
url http://dx.doi.org/10.1155/AAA.2005.575
work_keys_str_mv AT jaumellibre periodsforholomorphicmapsvialefschetznumbers
AT michaeltodd periodsforholomorphicmapsvialefschetznumbers
_version_ 1725258048885227520