The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for portability (HIP) framework and its large-scale application
<p>A high-resolution (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn&...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-05-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/14/2781/2021/gmd-14-2781-2021.pdf |
Summary: | <p>A high-resolution (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">20</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="373dde63ac63417a7e30c3aa9e00e973"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-14-2781-2021-ie00001.svg" width="31pt" height="14pt" src="gmd-14-2781-2021-ie00001.png"/></svg:svg></span></span>) global ocean general circulation model
with graphics processing unit (GPU) code implementations is developed based on
the LASG/IAP Climate System Ocean Model version 3 (LICOM3) under a
heterogeneous-compute interface for portability (HIP) framework. The dynamic
core and physics package of LICOM3 are both ported to the GPU, and
three-dimensional parallelization (also partitioned in the vertical direction) is
applied. The HIP version of LICOM3 (LICOM3-HIP) is 42 times faster than the
same number of CPU cores when 384 AMD GPUs and CPU cores are used. LICOM3-HIP
has excellent scalability; it can still obtain a speedup of more than 4 on
9216 <span class="inline-formula">GPUs</span> compared to 384 <span class="inline-formula">GPUs</span>. In this phase, we successfully
performed a test of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">20</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0cf7697ff56d2784b0bb3e419043e427"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-14-2781-2021-ie00002.svg" width="31pt" height="14pt" src="gmd-14-2781-2021-ie00002.png"/></svg:svg></span></span> LICOM3-HIP using 6550 nodes and
26 200 <span class="inline-formula">GPUs</span>, and on a large scale, the model's speed was increased to
approximately 2.72 simulated years per day (SYPD). By putting almost all the
computation processes inside GPUs, the time cost of data transfer between CPUs
and GPUs was reduced, resulting in high performance. Simultaneously, a 14-year
spin-up integration following phase 2 of the Ocean Model Intercomparison
Project (OMIP-2) protocol of surface forcing was performed, and preliminary
results were evaluated. We found that the model results had little difference
from the CPU version. Further comparison with observations and
lower-resolution LICOM3 results suggests that the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">20</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="cb58d9ccf1e27ce2a56318f89fca3ad5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-14-2781-2021-ie00003.svg" width="31pt" height="14pt" src="gmd-14-2781-2021-ie00003.png"/></svg:svg></span></span> LICOM3-HIP
can reproduce the observations and produce many smaller-scale activities, such
as submesoscale eddies and frontal-scale structures.</p> |
---|---|
ISSN: | 1991-959X 1991-9603 |