Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots

Considering the enormous advances in nanometer-scale CMOS technology that now allows one to reliably fabricate billions of switching devices on a single silicon die, electrostatically controlled quantum dots (implemented as quantum wells) appear to be promising candidates for a massive implementatio...

Full description

Bibliographic Details
Main Authors: Panagiotis Giounanlis, Elena Blokhina, Krzysztof Pomorski, Dirk R. Leipold, Robert Bogdan Staszewski
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8681511/
id doaj-30394141162b42e381e393f362fca725
record_format Article
spelling doaj-30394141162b42e381e393f362fca7252021-03-29T22:20:34ZengIEEEIEEE Access2169-35362019-01-017492624927810.1109/ACCESS.2019.29094898681511Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum DotsPanagiotis Giounanlis0https://orcid.org/0000-0002-6109-5598Elena Blokhina1https://orcid.org/0000-0002-4164-4350Krzysztof Pomorski2Dirk R. Leipold3Robert Bogdan Staszewski4https://orcid.org/0000-0001-9848-1129School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandSchool of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandSchool of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandEqual1 Labs, Fremont, CA, USASchool of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandConsidering the enormous advances in nanometer-scale CMOS technology that now allows one to reliably fabricate billions of switching devices on a single silicon die, electrostatically controlled quantum dots (implemented as quantum wells) appear to be promising candidates for a massive implementation of quantum bits (qubits) and quantum logic circuits in order to facilitate high-volume production of quantum computers. In this paper, the case of finite two-well and multiple-well potentials arising from semiconductor charged-coupled structures are treated in a rigorous way by Schro&#x0308;dinger formalism. The modeling methodologies presented to allow one to describe the dynamics of quantum states in non-ideal geometries, account for some mechanisms of qubit decoherence and model electrostatic interaction between electrons that lead to entanglement. The presented methodology can be scaled up to circuits of greater complexity.https://ieeexplore.ieee.org/document/8681511/CMOS technologyelectrostatic semiconductor qubitcoupled semiconductor quantum dot<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">N</italic>-well systemdecoherence timetime-dependent Schrödinger equation
collection DOAJ
language English
format Article
sources DOAJ
author Panagiotis Giounanlis
Elena Blokhina
Krzysztof Pomorski
Dirk R. Leipold
Robert Bogdan Staszewski
spellingShingle Panagiotis Giounanlis
Elena Blokhina
Krzysztof Pomorski
Dirk R. Leipold
Robert Bogdan Staszewski
Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
IEEE Access
CMOS technology
electrostatic semiconductor qubit
coupled semiconductor quantum dot
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">N</italic>-well system
decoherence time
time-dependent Schrödinger equation
author_facet Panagiotis Giounanlis
Elena Blokhina
Krzysztof Pomorski
Dirk R. Leipold
Robert Bogdan Staszewski
author_sort Panagiotis Giounanlis
title Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
title_short Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
title_full Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
title_fullStr Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
title_full_unstemmed Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
title_sort modeling of semiconductor electrostatic qubits realized through coupled quantum dots
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description Considering the enormous advances in nanometer-scale CMOS technology that now allows one to reliably fabricate billions of switching devices on a single silicon die, electrostatically controlled quantum dots (implemented as quantum wells) appear to be promising candidates for a massive implementation of quantum bits (qubits) and quantum logic circuits in order to facilitate high-volume production of quantum computers. In this paper, the case of finite two-well and multiple-well potentials arising from semiconductor charged-coupled structures are treated in a rigorous way by Schro&#x0308;dinger formalism. The modeling methodologies presented to allow one to describe the dynamics of quantum states in non-ideal geometries, account for some mechanisms of qubit decoherence and model electrostatic interaction between electrons that lead to entanglement. The presented methodology can be scaled up to circuits of greater complexity.
topic CMOS technology
electrostatic semiconductor qubit
coupled semiconductor quantum dot
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">N</italic>-well system
decoherence time
time-dependent Schrödinger equation
url https://ieeexplore.ieee.org/document/8681511/
work_keys_str_mv AT panagiotisgiounanlis modelingofsemiconductorelectrostaticqubitsrealizedthroughcoupledquantumdots
AT elenablokhina modelingofsemiconductorelectrostaticqubitsrealizedthroughcoupledquantumdots
AT krzysztofpomorski modelingofsemiconductorelectrostaticqubitsrealizedthroughcoupledquantumdots
AT dirkrleipold modelingofsemiconductorelectrostaticqubitsrealizedthroughcoupledquantumdots
AT robertbogdanstaszewski modelingofsemiconductorelectrostaticqubitsrealizedthroughcoupledquantumdots
_version_ 1724191824456712192