Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation

This work considers the model order reduction approach for parametrized viscous fingering in a horizontal flow through a 2D porous media domain. A technique for constructing an optimal low-dimensional basis for a multidimensional parameter domain is introduced by combining K-means clustering with pr...

Full description

Bibliographic Details
Main Authors: Norapon Sukuntee, Saifon Chaturantabut
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2020/3904606
id doaj-302a11f45c4644f9a1b30551b8087f0e
record_format Article
spelling doaj-302a11f45c4644f9a1b30551b8087f0e2020-11-25T03:29:08ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422020-01-01202010.1155/2020/39046063904606Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow SimulationNorapon Sukuntee0Saifon Chaturantabut1Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, ThailandDepartment of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, ThailandThis work considers the model order reduction approach for parametrized viscous fingering in a horizontal flow through a 2D porous media domain. A technique for constructing an optimal low-dimensional basis for a multidimensional parameter domain is introduced by combining K-means clustering with proper orthogonal decomposition (POD). In particular, we first randomly generate parameter vectors in multidimensional parameter domain of interest. Next, we perform the K-means clustering algorithm on these parameter vectors to find the centroids. POD basis is then generated from the solutions of the parametrized systems corresponding to these parameter centroids. The resulting POD basis is then used with Galerkin projection to construct reduced-order systems for various parameter vectors in the given domain together with applying the discrete empirical interpolation method (DEIM) to further reduce the computational complexity in nonlinear terms of the miscible flow model. The numerical results with varying different parameters are demonstrated to be efficient in decreasing simulation time while maintaining accuracy compared to the full-order model for various parameter values.http://dx.doi.org/10.1155/2020/3904606
collection DOAJ
language English
format Article
sources DOAJ
author Norapon Sukuntee
Saifon Chaturantabut
spellingShingle Norapon Sukuntee
Saifon Chaturantabut
Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation
Journal of Applied Mathematics
author_facet Norapon Sukuntee
Saifon Chaturantabut
author_sort Norapon Sukuntee
title Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation
title_short Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation
title_full Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation
title_fullStr Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation
title_full_unstemmed Parametric Nonlinear Model Reduction Using K-Means Clustering for Miscible Flow Simulation
title_sort parametric nonlinear model reduction using k-means clustering for miscible flow simulation
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2020-01-01
description This work considers the model order reduction approach for parametrized viscous fingering in a horizontal flow through a 2D porous media domain. A technique for constructing an optimal low-dimensional basis for a multidimensional parameter domain is introduced by combining K-means clustering with proper orthogonal decomposition (POD). In particular, we first randomly generate parameter vectors in multidimensional parameter domain of interest. Next, we perform the K-means clustering algorithm on these parameter vectors to find the centroids. POD basis is then generated from the solutions of the parametrized systems corresponding to these parameter centroids. The resulting POD basis is then used with Galerkin projection to construct reduced-order systems for various parameter vectors in the given domain together with applying the discrete empirical interpolation method (DEIM) to further reduce the computational complexity in nonlinear terms of the miscible flow model. The numerical results with varying different parameters are demonstrated to be efficient in decreasing simulation time while maintaining accuracy compared to the full-order model for various parameter values.
url http://dx.doi.org/10.1155/2020/3904606
work_keys_str_mv AT noraponsukuntee parametricnonlinearmodelreductionusingkmeansclusteringformiscibleflowsimulation
AT saifonchaturantabut parametricnonlinearmodelreductionusingkmeansclusteringformiscibleflowsimulation
_version_ 1715201096278867968