A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications

Summary: This article proposed a high-performance triboelectric-electromagnetic hybrid wind energy harvester (WEH). By adopting the revolution and rotation movements of tapered rollers, which serve as both the rotor of the electromagnetic generator (EMG) part and freestanding layers of the triboelec...

Full description

Bibliographic Details
Main Authors: Yan Fang, Tianyi Tang, Yunfei Li, Cheng Hou, Feng Wen, Zhan Yang, Tao Chen, Lining Sun, Huicong Liu, Chengkuo Lee
Format: Article
Language:English
Published: Elsevier 2021-04-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004221002686
Description
Summary:Summary: This article proposed a high-performance triboelectric-electromagnetic hybrid wind energy harvester (WEH). By adopting the revolution and rotation movements of tapered rollers, which serve as both the rotor of the electromagnetic generator (EMG) part and freestanding layers of the triboelectric nanogenerator (TENG) part, the WEH can work as a sustainable power source and a self-powered wind speed sensor. When the wind speed is 12 m/s, super-high open-circuit voltage peaks of 47.4 and 683 V can be achieved by the EMG and TENG, respectively, corresponding to the high-power outputs of 62 and 1.8 mW. It was demonstrated that the WEH can easily light up over 600 red light-emitting diodes and even a 5-W globe light. A self-powered wireless temperature and humidity sensing network was also systematically demonstrated. In summary, the proposed WEH exhibits bright future toward IoT applications, such as in border detection, smart buildings, and so on.
ISSN:2589-0042