AUTOMORPHISMS OF DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {25; 16; 1; 1; 8; 25}
Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and with \(\lambda=\mu\). They proposed the program of investigation vertex-symmetric antipodal distance-...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin.
2017-07-01
|
Series: | Ural Mathematical Journal |
Subjects: | |
Online Access: | https://umjuran.ru/index.php/umj/article/view/79 |
Summary: | Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and with \(\lambda=\mu\). They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs of diameter 3 with \(\lambda=\mu\), in which neighborhoods of vertices are strongly regular. In this paper we consider neighborhoods of vertices with parameters \((25,8,3,2)\). |
---|---|
ISSN: | 2414-3952 |