Serum and cerebrospinal fluid levels of transthyretin in Lewy body disorders with and without dementia.

Parkinson's disease (PD) without (non-demented, PDND) and with dementia (PDD), and dementia with Lewy bodies (DLB) are subsumed under the umbrella term Lewy body disorders (LBD). The main component of the underlying pathologic substrate, i.e. Lewy bodies and Lewy neurites, is misfolded alpha-sy...

Full description

Bibliographic Details
Main Authors: Walter Maetzler, Youyong Tian, Stephanie Maria Baur, Tina Gauger, Bartholomäus Odoj, Benjamin Schmid, Claudia Schulte, Christian Deuschle, Susanna Heck, Anja Apel, Arthur Melms, Thomas Gasser, Daniela Berg
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23133543/pdf/?tool=EBI
Description
Summary:Parkinson's disease (PD) without (non-demented, PDND) and with dementia (PDD), and dementia with Lewy bodies (DLB) are subsumed under the umbrella term Lewy body disorders (LBD). The main component of the underlying pathologic substrate, i.e. Lewy bodies and Lewy neurites, is misfolded alpha-synuclein (Asyn), and--in particular in demented LBD patients--co-occurring misfolded amyloid-beta (Abeta). Lowered blood and cerebrospinal fluid (CSF) levels of transthyretin (TTR)--a clearance protein mainly produced in the liver and, autonomously, in the choroid plexus--are associated with Abeta accumulation in Alzheimer's disease. In addition, a recent study suggests that TTR is involved in Asyn clearance. We measured TTR protein levels in serum and cerebrospinal fluid of 131 LBD patients (77 PDND, 26 PDD, and 28 DLB) and 72 controls, and compared TTR levels with demographic and clinical data as well as neurodegenerative markers in the CSF. Five single nucleotide polymorphisms of the TTR gene which are considered to influence the ability of the protein to carry its ligands were also analyzed. CSF TTR levels were significantly higher in LBD patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by PDND patients. In addition, CSF TTR levels correlated negatively with CSF Abeta(1-42), total tau and phospho-tau levels. Serum TTR levels did not significantly differ among the studied groups. There were no relevant associations between TTR levels and genetic, demographic and clinical data, respectively. These results suggest an involvement of the clearance protein TTR in LBD pathophysiology, and should motivate to elucidate TTR-related mechanisms in LBD in more detail.
ISSN:1932-6203