A Conformance Testing Methodology and System for Cognitive Radios
The fifth generation (5G) of mobile networks has started its operation in some countries and is aimed at meeting demands beyond the current system capabilities such as the huge amount of connected devices from IoT applications (e.g., smart cities), explosive growth of high-speed mobile data traffic...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2021-01-01
|
Series: | Wireless Communications and Mobile Computing |
Online Access: | http://dx.doi.org/10.1155/2021/8869104 |
Summary: | The fifth generation (5G) of mobile networks has started its operation in some countries and is aimed at meeting demands beyond the current system capabilities such as the huge amount of connected devices from IoT applications (e.g., smart cities), explosive growth of high-speed mobile data traffic (e.g., ultrahigh definition video streaming), and ultrareliable and low latency communication (e.g., autonomous vehicle). To attend to these needs, the electromagnetic spectrum must be made available, but the static spectrum allocation policy has caused a spectrum shortage and impaired the employment/expansion of the wireless systems. To overcome this issue, the dynamic spectrum access (DSA) has been promoted in 5G/6G networks, which is enabled by the cognitive radio (CR) technology. Although diverse mechanisms have been developed to tackle the challenges that emerge in different CR layers/functionalities, a standardized testing methodology and system for CR is still immature. Existing standards or methodologies and systems for CR only focus on the definition of network technologies (e.g., IEEE 802.22 and IEEE 802.11af), performance evaluation of CR algorithms/mechanisms, or definition of the device cognition level via performance results or psychometric approaches, not covering systems/methodologies to verify if the device meets the CR capabilities and regulatory policies, neglecting the conformance testing. In this respect, this paper proposes a flexible methodology and system for CR conformance testing under two perspectives, functionalities and limits. We instantiate it by using the Universal Software Radio Peripheral (USRP) software-defined radio platform and present a proof-of-concept with a conformance metric. The results show the feasibility of our proposal. |
---|---|
ISSN: | 1530-8669 1530-8677 |