Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen

The photocatalytic degradation of two azo-dyes–an industrial one (Congo Red (CR)), and an alimentary one (Amaranth (AM))–has been investigated in TiO2/UV aqueous suspensions. In addition to a prompt removal of the colors, TiO2/UV-based photocatalysis was simultaneously able to fully oxidize the dyes...

Full description

Bibliographic Details
Main Authors: E. Puzenat, H. Lachheb, M. Karkmaz, A. Houas, C. Guillard, J. M. Herrmann
Format: Article
Language:English
Published: Hindawi Limited 2003-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/S1110662X03000138
id doaj-2fc624e3dc304f748cd027876a65629c
record_format Article
spelling doaj-2fc624e3dc304f748cd027876a65629c2020-11-24T22:55:52ZengHindawi LimitedInternational Journal of Photoenergy1110-662X2003-01-0152515810.1155/S1110662X03000138Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogenE. Puzenat0H. Lachheb1M. Karkmaz2A. Houas3C. Guillard4J. M. Herrmann5Laboratoire de Photocatalyse Catalyse et Environnement, (LPCE), UMR CNRS IFOS no. 5621 Ecole Centrale Lyon, Ecully Cedex, 69134, FranceLaboratoire de Photocatalyse Catalyse et Environnement, (LPCE), UMR CNRS IFOS no. 5621 Ecole Centrale Lyon, Ecully Cedex, 69134, FranceLaboratoire de Photocatalyse Catalyse et Environnement, (LPCE), UMR CNRS IFOS no. 5621 Ecole Centrale Lyon, Ecully Cedex, 69134, FranceLaboratoire de Catalyse et Environnement, ENIG, Gabès, TunisiaLaboratoire de Photocatalyse Catalyse et Environnement, (LPCE), UMR CNRS IFOS no. 5621 Ecole Centrale Lyon, Ecully Cedex, 69134, FranceLaboratoire de Photocatalyse Catalyse et Environnement, (LPCE), UMR CNRS IFOS no. 5621 Ecole Centrale Lyon, Ecully Cedex, 69134, FranceThe photocatalytic degradation of two azo-dyes–an industrial one (Congo Red (CR)), and an alimentary one (Amaranth (AM))–has been investigated in TiO2/UV aqueous suspensions. In addition to a prompt removal of the colors, TiO2/UV-based photocatalysis was simultaneously able to fully oxidize the dyes, with a complete mineralization of organic carbon into CO2. In particular, the aromatic rings were submitted to successive attacks by photogenerated OH∘ radicals leading to hydroxylated metabolites before the ring opening and the final evolution of CO2 induced by repeated subsequent “photo-Kolbe” reactions with carboxylic intermediates. Simultaneously, sulfur heteroatoms were converted into innocuous SO42− ions. The mineralization of nitrogen was more complex to analyze. Nitrogen atoms in the -3 oxidation state, such as in the amino-groups of CR, initially remained at this reduction degree and produced NH4+ cations, subsequently and very slowly converted into NO3− anions. For both azo-dyes (CR and AM) degradation, the overall mass balance in nitrogen was always found incomplete. Various experiments performed in pure oxygen in a vacuum-tight cell and then in an air-free photoreactor (but filled with pure oxygen) enabled us to put in evidence the formation of N2. Quantitative measurements clearly indicated that gaseous dinitrogen evolved stoichiometrically corresponded to the mineralization of the central –N=N– azo-group. This constitutes the ideal issue for the elimination of nitrogen-containing pollutants, not only for environmental photocatalysis but also for any other physicochemical method. These results suggest that TiO2/UV photocatalysis may be envisaged as a method for treatment of diluted colored waste waters not only for decolorization but also for total detoxification, in particular in textile industries in semi-arid countries.http://dx.doi.org/10.1155/S1110662X03000138
collection DOAJ
language English
format Article
sources DOAJ
author E. Puzenat
H. Lachheb
M. Karkmaz
A. Houas
C. Guillard
J. M. Herrmann
spellingShingle E. Puzenat
H. Lachheb
M. Karkmaz
A. Houas
C. Guillard
J. M. Herrmann
Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen
International Journal of Photoenergy
author_facet E. Puzenat
H. Lachheb
M. Karkmaz
A. Houas
C. Guillard
J. M. Herrmann
author_sort E. Puzenat
title Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen
title_short Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen
title_full Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen
title_fullStr Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen
title_full_unstemmed Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen
title_sort fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. evidence for mineralization into gaseous dinitrogen
publisher Hindawi Limited
series International Journal of Photoenergy
issn 1110-662X
publishDate 2003-01-01
description The photocatalytic degradation of two azo-dyes–an industrial one (Congo Red (CR)), and an alimentary one (Amaranth (AM))–has been investigated in TiO2/UV aqueous suspensions. In addition to a prompt removal of the colors, TiO2/UV-based photocatalysis was simultaneously able to fully oxidize the dyes, with a complete mineralization of organic carbon into CO2. In particular, the aromatic rings were submitted to successive attacks by photogenerated OH∘ radicals leading to hydroxylated metabolites before the ring opening and the final evolution of CO2 induced by repeated subsequent “photo-Kolbe” reactions with carboxylic intermediates. Simultaneously, sulfur heteroatoms were converted into innocuous SO42− ions. The mineralization of nitrogen was more complex to analyze. Nitrogen atoms in the -3 oxidation state, such as in the amino-groups of CR, initially remained at this reduction degree and produced NH4+ cations, subsequently and very slowly converted into NO3− anions. For both azo-dyes (CR and AM) degradation, the overall mass balance in nitrogen was always found incomplete. Various experiments performed in pure oxygen in a vacuum-tight cell and then in an air-free photoreactor (but filled with pure oxygen) enabled us to put in evidence the formation of N2. Quantitative measurements clearly indicated that gaseous dinitrogen evolved stoichiometrically corresponded to the mineralization of the central –N=N– azo-group. This constitutes the ideal issue for the elimination of nitrogen-containing pollutants, not only for environmental photocatalysis but also for any other physicochemical method. These results suggest that TiO2/UV photocatalysis may be envisaged as a method for treatment of diluted colored waste waters not only for decolorization but also for total detoxification, in particular in textile industries in semi-arid countries.
url http://dx.doi.org/10.1155/S1110662X03000138
work_keys_str_mv AT epuzenat fateofnitrogenatomsinthephotocatalyticdegradationofindustrialcongoredandalimentaryamaranthazodyesevidenceformineralizationintogaseousdinitrogen
AT hlachheb fateofnitrogenatomsinthephotocatalyticdegradationofindustrialcongoredandalimentaryamaranthazodyesevidenceformineralizationintogaseousdinitrogen
AT mkarkmaz fateofnitrogenatomsinthephotocatalyticdegradationofindustrialcongoredandalimentaryamaranthazodyesevidenceformineralizationintogaseousdinitrogen
AT ahouas fateofnitrogenatomsinthephotocatalyticdegradationofindustrialcongoredandalimentaryamaranthazodyesevidenceformineralizationintogaseousdinitrogen
AT cguillard fateofnitrogenatomsinthephotocatalyticdegradationofindustrialcongoredandalimentaryamaranthazodyesevidenceformineralizationintogaseousdinitrogen
AT jmherrmann fateofnitrogenatomsinthephotocatalyticdegradationofindustrialcongoredandalimentaryamaranthazodyesevidenceformineralizationintogaseousdinitrogen
_version_ 1725656110975680512