An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups

We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G...

Full description

Bibliographic Details
Main Authors: S. Ben Farah, K. Mokni, K. Trimèche
Format: Article
Language:English
Published: Hindawi Limited 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204209140
id doaj-2fbbc1032e9b4e71919ffb3b8ee27cf0
record_format Article
spelling doaj-2fbbc1032e9b4e71919ffb3b8ee27cf02020-11-24T22:35:42ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252004-01-012004331757176910.1155/S0161171204209140An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groupsS. Ben Farah0K. Mokni1K. Trimèche2Département de Mathématiques, Faculté des Sciences de Monastir, Monastir 5019, TunisiaDépartement de Mathématiques, Faculté des Sciences de Monastir, Monastir 5019, TunisiaDépartement de Mathématiques, Faculté des Sciences de Tunis, Tunis 1060, TunisiaWe consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G such that ha−1f∈Lp(G) and eb‖λ‖2ℱ(f)∈Lq(𝔞+*) (ha is the heat kernel on G). We establish that if ab≥1/4 and p or q is finite, then f=0 almost everywhere. If ab<1/4, we prove that for all p, q, there are infinitely many nonzero functions f and if ab=1/4 with p=q=∞, we have f=const ha.http://dx.doi.org/10.1155/S0161171204209140
collection DOAJ
language English
format Article
sources DOAJ
author S. Ben Farah
K. Mokni
K. Trimèche
spellingShingle S. Ben Farah
K. Mokni
K. Trimèche
An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
International Journal of Mathematics and Mathematical Sciences
author_facet S. Ben Farah
K. Mokni
K. Trimèche
author_sort S. Ben Farah
title An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
title_short An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
title_full An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
title_fullStr An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
title_full_unstemmed An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
title_sort lp−lq version of hardy's theorem for spherical fourier transform on semisimple lie groups
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2004-01-01
description We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G such that ha−1f∈Lp(G) and eb‖λ‖2ℱ(f)∈Lq(𝔞+*) (ha is the heat kernel on G). We establish that if ab≥1/4 and p or q is finite, then f=0 almost everywhere. If ab<1/4, we prove that for all p, q, there are infinitely many nonzero functions f and if ab=1/4 with p=q=∞, we have f=const ha.
url http://dx.doi.org/10.1155/S0161171204209140
work_keys_str_mv AT sbenfarah anlplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups
AT kmokni anlplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups
AT ktrimeche anlplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups
AT sbenfarah lplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups
AT kmokni lplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups
AT ktrimeche lplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups
_version_ 1725723139420192768