An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2004-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171204209140 |
id |
doaj-2fbbc1032e9b4e71919ffb3b8ee27cf0 |
---|---|
record_format |
Article |
spelling |
doaj-2fbbc1032e9b4e71919ffb3b8ee27cf02020-11-24T22:35:42ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252004-01-012004331757176910.1155/S0161171204209140An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groupsS. Ben Farah0K. Mokni1K. Trimèche2Département de Mathématiques, Faculté des Sciences de Monastir, Monastir 5019, TunisiaDépartement de Mathématiques, Faculté des Sciences de Monastir, Monastir 5019, TunisiaDépartement de Mathématiques, Faculté des Sciences de Tunis, Tunis 1060, TunisiaWe consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G such that ha−1f∈Lp(G) and eb‖λ‖2ℱ(f)∈Lq(𝔞+*) (ha is the heat kernel on G). We establish that if ab≥1/4 and p or q is finite, then f=0 almost everywhere. If ab<1/4, we prove that for all p, q, there are infinitely many nonzero functions f and if ab=1/4 with p=q=∞, we have f=const ha.http://dx.doi.org/10.1155/S0161171204209140 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. Ben Farah K. Mokni K. Trimèche |
spellingShingle |
S. Ben Farah K. Mokni K. Trimèche An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups International Journal of Mathematics and Mathematical Sciences |
author_facet |
S. Ben Farah K. Mokni K. Trimèche |
author_sort |
S. Ben Farah |
title |
An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups |
title_short |
An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups |
title_full |
An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups |
title_fullStr |
An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups |
title_full_unstemmed |
An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups |
title_sort |
lp−lq version of hardy's theorem for spherical fourier transform on semisimple lie groups |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
2004-01-01 |
description |
We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G such that ha−1f∈Lp(G) and eb‖λ‖2ℱ(f)∈Lq(𝔞+*) (ha is the heat kernel on G). We establish that if ab≥1/4 and p or q is finite, then f=0 almost everywhere. If ab<1/4, we prove that for all p, q, there are infinitely many nonzero functions f and if ab=1/4 with p=q=∞, we have f=const ha. |
url |
http://dx.doi.org/10.1155/S0161171204209140 |
work_keys_str_mv |
AT sbenfarah anlplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups AT kmokni anlplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups AT ktrimeche anlplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups AT sbenfarah lplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups AT kmokni lplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups AT ktrimeche lplqversionofhardystheoremforsphericalfouriertransformonsemisimpleliegroups |
_version_ |
1725723139420192768 |