ISAR Imaging Based on Multiple Measurement Vector Model Sparse Signal Recovery Algorithm
A multiple measurement vector (MMV) model blocks sparse signal recovery. ISAR imaging algorithm is proposed to improve ISAR imaging quality. Firstly, the sparse imaging model is built, and block sparse signal recovery algorithm-based MMV model is applied to ISAR imaging. Then, a negative exponential...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/1743593 |
Summary: | A multiple measurement vector (MMV) model blocks sparse signal recovery. ISAR imaging algorithm is proposed to improve ISAR imaging quality. Firstly, the sparse imaging model is built, and block sparse signal recovery algorithm-based MMV model is applied to ISAR imaging. Then, a negative exponential function is proposed to approximately block L0 norm. The optimization solution of smoothed function is obtained by constructing a decreasing sequence. Finally, the correction steps are added to ensure the optimal solution of the block sparse signal along the fastest descent direction. Several simulations and real data simulation experiments verify the proposed algorithm has advantages in imaging time and quality. |
---|---|
ISSN: | 1024-123X 1563-5147 |