Bacteria and viruses modulate FcεRI-dependent mast cell activity 

Undoubtedly, mast cells play a central role in allergic processes. Specific allergen cross-linking of IgE bound to the high affinity receptors (FcεRI) on the mast cell surface leads to the release of preformed mediators and newly synthesized mediators, i.e. metabolites of arachidonic acid and cytoki...

Full description

Bibliographic Details
Main Authors: Aleksandra Słodka, Ewa Brzezińska-Błaszczyk
Format: Article
Language:English
Published: Index Copernicus International S.A. 2013-03-01
Series:Postępy Higieny i Medycyny Doświadczalnej
Subjects:
Online Access:http://journals.indexcopernicus.com/fulltxt.php?ICID=1038360
Description
Summary:Undoubtedly, mast cells play a central role in allergic processes. Specific allergen cross-linking of IgE bound to the high affinity receptors (FcεRI) on the mast cell surface leads to the release of preformed mediators and newly synthesized mediators, i.e. metabolites of arachidonic acid and cytokines. More and more data indicate that bacteria and viruses can influence FcεRI-dependent mast cell activation. Some bacterial and viral components can reduce the surface expression of FcεRI. There are also findings that ligation of Toll-like receptors (TLRs) by bacterial or viral antigens can affect IgE-dependent mast cell degranulation and preformed mediator release as well as eicosanoid production. The synergistic interaction of TLR ligands and allergen can also modify cytokine synthesis by mast cells stimulated via FcεRI. Moreover, data suggest that specific IgE for bacterial or viral antigens can influence mast cell activity. What is more, some bacterial and viral components or some endogenous proteins produced during viral infection can act as superantigens by interacting with the VH3 domain of IgE. All these observations indicate that bacterial and viral infections modify the course of allergic diseases by affecting FcεRI-dependent mast cell activation. 
ISSN:0032-5449
1732-2693