Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility
Currently, there are more than 1.5 million knee and hip replacement procedures carried out in the United States. Implants have a 10−15-year lifespan with up to 30% of revision surgeries showing complications with osteomyelitis. Titanium and titanium alloys are the favored implant materials...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/11/1/87 |
id |
doaj-2f99f43d525b4e4b9c2617100f4b33b7 |
---|---|
record_format |
Article |
spelling |
doaj-2f99f43d525b4e4b9c2617100f4b33b72020-11-25T01:45:50ZengMDPI AGMicromachines2072-666X2020-01-011118710.3390/mi11010087mi11010087Methacrylate Coatings for Titanium Surfaces to Optimize BiocompatibilityArgus Sun0Nureddin Ashammakhi1Mehmet R. Dokmeci2Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USACenter for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USACenter for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USACurrently, there are more than 1.5 million knee and hip replacement procedures carried out in the United States. Implants have a 10−15-year lifespan with up to 30% of revision surgeries showing complications with osteomyelitis. Titanium and titanium alloys are the favored implant materials because they are lightweight and have high mechanical strength. However, this increased strength can be associated with decreased bone density around the implant, leading to implant loosening and failure. To avoid this, current strategies include plasma-spraying titanium surfaces and foaming titanium. Both techniques give the titanium a rough and irregular finish that improves biocompatibility. Recently, researchers have also sought to surface-conjugate proteins to titanium to induce osteointegration. Cell adhesion-promoting proteins can be conjugated to methacrylate groups and crosslinked using a variety of methods. Methacrylated proteins can be conjugated to titanium surfaces through atom transfer radical polymerization (ATRP). However, surface conjugation of proteins increases biocompatibility non-specifically to bone cells, adding to the risk of biofouling which may result in osteomyelitis that causes implant failure. In this work, we analyze the factors contributing to biofouling when coating titanium to improve biocompatibility, and design an experimental scheme to evaluate optimal coating parameters.https://www.mdpi.com/2072-666X/11/1/87titanium coatingimplanted medical devicesbiomaterialssurface chemistrychemical descriptorsmachine learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Argus Sun Nureddin Ashammakhi Mehmet R. Dokmeci |
spellingShingle |
Argus Sun Nureddin Ashammakhi Mehmet R. Dokmeci Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility Micromachines titanium coating implanted medical devices biomaterials surface chemistry chemical descriptors machine learning |
author_facet |
Argus Sun Nureddin Ashammakhi Mehmet R. Dokmeci |
author_sort |
Argus Sun |
title |
Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility |
title_short |
Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility |
title_full |
Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility |
title_fullStr |
Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility |
title_full_unstemmed |
Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility |
title_sort |
methacrylate coatings for titanium surfaces to optimize biocompatibility |
publisher |
MDPI AG |
series |
Micromachines |
issn |
2072-666X |
publishDate |
2020-01-01 |
description |
Currently, there are more than 1.5 million knee and hip replacement procedures carried out in the United States. Implants have a 10−15-year lifespan with up to 30% of revision surgeries showing complications with osteomyelitis. Titanium and titanium alloys are the favored implant materials because they are lightweight and have high mechanical strength. However, this increased strength can be associated with decreased bone density around the implant, leading to implant loosening and failure. To avoid this, current strategies include plasma-spraying titanium surfaces and foaming titanium. Both techniques give the titanium a rough and irregular finish that improves biocompatibility. Recently, researchers have also sought to surface-conjugate proteins to titanium to induce osteointegration. Cell adhesion-promoting proteins can be conjugated to methacrylate groups and crosslinked using a variety of methods. Methacrylated proteins can be conjugated to titanium surfaces through atom transfer radical polymerization (ATRP). However, surface conjugation of proteins increases biocompatibility non-specifically to bone cells, adding to the risk of biofouling which may result in osteomyelitis that causes implant failure. In this work, we analyze the factors contributing to biofouling when coating titanium to improve biocompatibility, and design an experimental scheme to evaluate optimal coating parameters. |
topic |
titanium coating implanted medical devices biomaterials surface chemistry chemical descriptors machine learning |
url |
https://www.mdpi.com/2072-666X/11/1/87 |
work_keys_str_mv |
AT argussun methacrylatecoatingsfortitaniumsurfacestooptimizebiocompatibility AT nureddinashammakhi methacrylatecoatingsfortitaniumsurfacestooptimizebiocompatibility AT mehmetrdokmeci methacrylatecoatingsfortitaniumsurfacestooptimizebiocompatibility |
_version_ |
1725022438252609536 |