Optimization of Bacillus licheniformis MAL tyrosinase: in vitro anticancer activity for brown and black eumelanin

The influence of tyrosinase in catalyzes/stimulates the eumelanin production was studied. Accordingly, bacterial sp. was isolated and identified as Bacillus licheniformis based on 16S rRNA. It could grow and gave monophenolase and diphenolase productivity in medium contained tyrosin and Cu2+ only. T...

Full description

Bibliographic Details
Main Authors: Al Shimaa Gamal Shalaby, Tamer I.M. Ragab, Mohamed M.I. Helal, Mona A. Esawy
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844018366908
Description
Summary:The influence of tyrosinase in catalyzes/stimulates the eumelanin production was studied. Accordingly, bacterial sp. was isolated and identified as Bacillus licheniformis based on 16S rRNA. It could grow and gave monophenolase and diphenolase productivity in medium contained tyrosin and Cu2+ only. The tyrosinase enzymes were optimized by studying different environmental and nutritional factors. The maximum monophenolase and diphenolase productivity were obtained at 60 °C, pH9, Cu2+(0.01g), liver extract (1 g/L) and the oxygen level fixed at 20%. Also, the mannose as a carbon source increased the monophenolase production 6.2 times. For the first time, two types of eumelanin were extracted by hydrochloric acid treatment. The black and brown eumelanin weighed (0.1 g/100 mL and 0.7 g/100 mL respectively) and characterized by using FTIR and UV/Vis spectroscopy techniques. Their morphological structure and its elemental composition were characterized by SEM and EDAX respectively. The black melanin showed promising anticancer activity towards HEPG-2 and HCT-116 cell lines with IC50 values (6.15, 5.54 μg) compared to Doxorubicin (4.05, 4.45 μg) respectively.
ISSN:2405-8440