Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression.
Adhesion and scarring after neural surgery are detrimental to nerve regeneration and functional recovery. Amniotic membranes have been used in tissue repair due to their immunogenicity and richness in cytokines. In this study, an electrospun polycaprolactone (PCL)-amnion nanofibrous membrane was pre...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0244301 |
id |
doaj-2f7fa508bbca4b309ec9045700d530d6 |
---|---|
record_format |
Article |
spelling |
doaj-2f7fa508bbca4b309ec9045700d530d62021-06-20T04:31:04ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-011512e024430110.1371/journal.pone.0244301Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression.Ruiyi DongChunjie LiuSiyu TianJiangbo BaiKunlun YuLei LiuDehu TianAdhesion and scarring after neural surgery are detrimental to nerve regeneration and functional recovery. Amniotic membranes have been used in tissue repair due to their immunogenicity and richness in cytokines. In this study, an electrospun polycaprolactone (PCL)-amnion nanofibrous membrane was prepared for the treatment of sciatic nerve compression in a rat model. The effects of the PCL-amnion nanofibrous membrane on the prevention of adhesion formation and nerve regeneration were evaluated using electrophysiology and histological analyses. Compared with the medical chitosan hydrogel dressing, the PCL-amnion nanofibrous membrane significantly reduced peripheral nerve adhesion and promoted the rapid recovery of nerve conduction. Moreover, the immunohistochemical analysis identified more Schwann cells and less pro-inflammatory M1 macrophages in the PCL-amnion group. Western blot and RT-PCR results showed that the expression levels of type-Ⅰ and Ⅲ collagen in the PCL-treated rats were half of those in the control group after 12 weeks, while the expression level of nerve growth factor was approximately 3.5 times that found in the rats treated with medical chitosan hydrogel. In summary, electrospun PCL-amnion nanofibrous membranes can effectively reduce adhesion after neural surgery and promote nerve repair and regeneration. The long-term retention in vivo and sustained release of cytokines make PCL-amnion a promising biomaterial for clinical application.https://doi.org/10.1371/journal.pone.0244301 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ruiyi Dong Chunjie Liu Siyu Tian Jiangbo Bai Kunlun Yu Lei Liu Dehu Tian |
spellingShingle |
Ruiyi Dong Chunjie Liu Siyu Tian Jiangbo Bai Kunlun Yu Lei Liu Dehu Tian Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. PLoS ONE |
author_facet |
Ruiyi Dong Chunjie Liu Siyu Tian Jiangbo Bai Kunlun Yu Lei Liu Dehu Tian |
author_sort |
Ruiyi Dong |
title |
Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. |
title_short |
Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. |
title_full |
Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. |
title_fullStr |
Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. |
title_full_unstemmed |
Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. |
title_sort |
electrospun polycaprolactone (pcl)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
Adhesion and scarring after neural surgery are detrimental to nerve regeneration and functional recovery. Amniotic membranes have been used in tissue repair due to their immunogenicity and richness in cytokines. In this study, an electrospun polycaprolactone (PCL)-amnion nanofibrous membrane was prepared for the treatment of sciatic nerve compression in a rat model. The effects of the PCL-amnion nanofibrous membrane on the prevention of adhesion formation and nerve regeneration were evaluated using electrophysiology and histological analyses. Compared with the medical chitosan hydrogel dressing, the PCL-amnion nanofibrous membrane significantly reduced peripheral nerve adhesion and promoted the rapid recovery of nerve conduction. Moreover, the immunohistochemical analysis identified more Schwann cells and less pro-inflammatory M1 macrophages in the PCL-amnion group. Western blot and RT-PCR results showed that the expression levels of type-Ⅰ and Ⅲ collagen in the PCL-treated rats were half of those in the control group after 12 weeks, while the expression level of nerve growth factor was approximately 3.5 times that found in the rats treated with medical chitosan hydrogel. In summary, electrospun PCL-amnion nanofibrous membranes can effectively reduce adhesion after neural surgery and promote nerve repair and regeneration. The long-term retention in vivo and sustained release of cytokines make PCL-amnion a promising biomaterial for clinical application. |
url |
https://doi.org/10.1371/journal.pone.0244301 |
work_keys_str_mv |
AT ruiyidong electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression AT chunjieliu electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression AT siyutian electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression AT jiangbobai electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression AT kunlunyu electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression AT leiliu electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression AT dehutian electrospunpolycaprolactonepclamnionnanofibrousmembranepreventsadhesionsandpromotesnerverepairinaratmodelofsciaticnervecompression |
_version_ |
1721370887767195648 |