Aggregate production planning: A literature review and future research directions

Aggregate production planning (APP) is concerned with determining the optimum production and workforce levels for each period over the medium term planning horizon. It aims to set overall production levels for each product family to meet fluctuating demand in the near future. APP is one of the most...

Full description

Bibliographic Details
Main Authors: Ali Cheraghalikhani, Farid Khoshalhan, Hadi Mokhtari
Format: Article
Language:English
Published: Growing Science 2018-10-01
Series:International Journal of Industrial Engineering Computations
Subjects:
Online Access:http://www.growingscience.com/ijiec/Vol10/IJIEC_2018_11.pdf
Description
Summary:Aggregate production planning (APP) is concerned with determining the optimum production and workforce levels for each period over the medium term planning horizon. It aims to set overall production levels for each product family to meet fluctuating demand in the near future. APP is one of the most critical areas of production planning systems. After the state-of-the-art summaries in 1992 by Nam and Logendran [ Nam, S. J., & Logendran, R. (1992). Aggregate production planning—a survey of models and methodologies. European Journal of Operational Research, 61(3), 255-272. ], which specifically summarized the various existing techniques from 1950 to 1990 into a framework depending on their abilities to either produce an exact optimal or near-optimal solution, there has not been any systematic survey in the literature. This paper reviews the literature on APP models to meet two main purposes. First, a systematic structure for classifying APP models is proposed. Second, the existing gaps in the literature are demonstrated in order to extract future directions of this research area. This paper covers a variety of APP models’ characteristics including modeling structures, important issues, and solving approaches, in contrast to other literature reviews in this field which focused on methodologies in APP models. Finally some directions for future research in this research area are suggested.
ISSN:1923-2926
1923-2934