Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.
Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and me...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3351440?pdf=render |
id |
doaj-2f65eb7c06574c7d8f9f1e8aab832f3c |
---|---|
record_format |
Article |
spelling |
doaj-2f65eb7c06574c7d8f9f1e8aab832f3c2020-11-25T01:42:56ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0175e3721810.1371/journal.pone.0037218Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.Kenneth C LohWeng-In LeongMorgan E CarlsonBabak OskouianAshok KumarHenrik FyrstMeng ZhangRichard L ProiaEric P HoffmanJulie D SabaSphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.http://europepmc.org/articles/PMC3351440?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kenneth C Loh Weng-In Leong Morgan E Carlson Babak Oskouian Ashok Kumar Henrik Fyrst Meng Zhang Richard L Proia Eric P Hoffman Julie D Saba |
spellingShingle |
Kenneth C Loh Weng-In Leong Morgan E Carlson Babak Oskouian Ashok Kumar Henrik Fyrst Meng Zhang Richard L Proia Eric P Hoffman Julie D Saba Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS ONE |
author_facet |
Kenneth C Loh Weng-In Leong Morgan E Carlson Babak Oskouian Ashok Kumar Henrik Fyrst Meng Zhang Richard L Proia Eric P Hoffman Julie D Saba |
author_sort |
Kenneth C Loh |
title |
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. |
title_short |
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. |
title_full |
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. |
title_fullStr |
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. |
title_full_unstemmed |
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. |
title_sort |
sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a s1pr2/stat3 signaling pathway. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2012-01-01 |
description |
Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD. |
url |
http://europepmc.org/articles/PMC3351440?pdf=render |
work_keys_str_mv |
AT kennethcloh sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT wenginleong sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT morganecarlson sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT babakoskouian sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT ashokkumar sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT henrikfyrst sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT mengzhang sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT richardlproia sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT ericphoffman sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway AT juliedsaba sphingosine1phosphateenhancessatellitecellactivationindystrophicmusclesthroughas1pr2stat3signalingpathway |
_version_ |
1725034236019212288 |