Summary: | Charm quarks are primarily produced at the early stages of ultra-relativistic heavy-ion collisions and can therefore probe the quark-gluon plasma throughout its whole evolution. Final-state open-charm hadrons are commonly used to experimentally study the charm quark interaction with the medium. Thanks to the excellent secondary vertex resolution provided by the Heavy Flavor Tracker, STAR is able to directly reconstruct D<inline-formula><math display="inline"> <semantics> <msup> <mrow></mrow> <mo>±</mo> </msup> </semantics> </math> </inline-formula>, D<inline-formula><math display="inline"> <semantics> <msup> <mrow></mrow> <mn>0</mn> </msup> </semantics> </math> </inline-formula>, D<inline-formula><math display="inline"> <semantics> <msub> <mrow></mrow> <mi mathvariant="normal">s</mi> </msub> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Λ</mi> <mrow> <mi mathvariant="normal">c</mi> </mrow> <mo>±</mo> </msubsup> </semantics> </math> </inline-formula> via their hadronic decay channels. The topological cuts for signal extraction are optimized using supervised machine learning techniques. In these proceedings, we present an overview of recent open charm results from the STAR experiment. The nuclear modification factors of open-charm mesons and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Λ</mi> <mrow> <mi mathvariant="normal">c</mi> </mrow> <mo>±</mo> </msubsup> </semantics> </math> </inline-formula>/D<inline-formula><math display="inline"> <semantics> <msup> <mrow></mrow> <mn>0</mn> </msup> </semantics> </math> </inline-formula> ratio are shown as functions of transverse momentum and collision centrality.
|