Determination of Metals in Natural Waters by Inductively Coupled Plasma Optical Emission Spectroscopy after Preconcentration on Silica Sequentially Coated with Layers of Polyhexamethylene Guanidinium and Sulphonated Nitrosonaphthols

A series of complexing adsorbents is prepared by coating silica particles with linear polyhexamethylene guanidinium (PHMG) chloride followed by saturation with a number of sulphonated nitrosonaphthols reagents electrostatically retained by positively charged polymer layer. PHMG coated silica is hydr...

Full description

Bibliographic Details
Main Authors: Svetlana L. Didukh-Shadrina, Vladimir N. Losev, Alexandr Samoilo, Anatoliy К. Trofimchuk, Pavel N. Nesterenko
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:International Journal of Analytical Chemistry
Online Access:http://dx.doi.org/10.1155/2019/1467631
Description
Summary:A series of complexing adsorbents is prepared by coating silica particles with linear polyhexamethylene guanidinium (PHMG) chloride followed by saturation with a number of sulphonated nitrosonaphthols reagents electrostatically retained by positively charged polymer layer. PHMG coated silica is hydrolytically stable even during treatment with 6 M HCl heated up to 50 °C. The adsorption of 1-nitroso-2-naphthol-3,6-disulfonic acid (nitroso-R-salt), 2-nitroso-1-naphthol-4-sulfonic acid (nitroso-N-salt), and 2-nitroso-1-naphthol-3,6-disulfonic acid (nitroso-K-salt) on PHMG modified silica was studied. The effective immobilisation of sulphonated nitrosonaphthols was achieved in the range of pH of 3 - 8, while the adsorption of the monosulphonated reagent (nitroso-N-salt) is twice as high as the disulphonated analogues (nitroso-R-salt and nitroso-K-salt). The adsorption of Cu(II), Fe(III), Co(II), Ni(II), Al(III), Zn(II), Pb(II), Mn(II), and Cr(III) on prepared complexing adsorbents under static and dynamic conditions was studied as a function of time, pH, sample volume, and presence of interfering ions. Metal ions can be desorbed by using 1 M HCl or 1 M HNO3. The preconcentration factors of metals under optimized conditions are varied from 20 to 80. The developed method was used for the preconcentration of trace metals from natural waters followed by ICP-OES determination. The sub-ppb limits of detection of metals are achieved.
ISSN:1687-8760
1687-8779