Grothendieck Universes

The foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] form...

Full description

Bibliographic Details
Main Author: Pąk Karol
Format: Article
Language:English
Published: Sciendo 2020-07-01
Series:Formalized Mathematics
Subjects:
Online Access:https://doi.org/10.2478/forma-2020-0018
id doaj-2ef4094621bc41909dd5972ec3f59c99
record_format Article
spelling doaj-2ef4094621bc41909dd5972ec3f59c992021-09-05T21:01:04ZengSciendoFormalized Mathematics1426-26301898-99342020-07-0128221121510.2478/forma-2020-0018forma-2020-0018Grothendieck UniversesPąk Karol0Institute of Informatics, University of Białystok, PolandThe foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] formalism, that the Grothendieck name is justified. We show the relationship between Tarski and Grothendieck universe.https://doi.org/10.2478/forma-2020-0018tarski-grothendieck set theorytarski’s axiom agrothendieck universe03e7068v20
collection DOAJ
language English
format Article
sources DOAJ
author Pąk Karol
spellingShingle Pąk Karol
Grothendieck Universes
Formalized Mathematics
tarski-grothendieck set theory
tarski’s axiom a
grothendieck universe
03e70
68v20
author_facet Pąk Karol
author_sort Pąk Karol
title Grothendieck Universes
title_short Grothendieck Universes
title_full Grothendieck Universes
title_fullStr Grothendieck Universes
title_full_unstemmed Grothendieck Universes
title_sort grothendieck universes
publisher Sciendo
series Formalized Mathematics
issn 1426-2630
1898-9934
publishDate 2020-07-01
description The foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] formalism, that the Grothendieck name is justified. We show the relationship between Tarski and Grothendieck universe.
topic tarski-grothendieck set theory
tarski’s axiom a
grothendieck universe
03e70
68v20
url https://doi.org/10.2478/forma-2020-0018
work_keys_str_mv AT pakkarol grothendieckuniverses
_version_ 1717781690110181376