Emergency vaccination of rabies under limited resources – combating or containing?

<p>Abstract</p> <p>Background</p> <p>Rabies is the most important viral zoonosis from a global perspective. Worldwide efforts to combat the disease by oral vaccination of reservoirs have managed to eradicate wildlife rabies in large areas of central Europe and North-Ame...

Full description

Bibliographic Details
Main Authors: Selhorst Thomas, Thulke Hans-Hermann, Eisinger Dirk, Müller Thomas
Format: Article
Language:English
Published: BMC 2005-03-01
Series:BMC Infectious Diseases
Online Access:http://www.biomedcentral.com/1471-2334/5/10
id doaj-2ee0b1c1b43d449a8aca8d99d9ceecae
record_format Article
spelling doaj-2ee0b1c1b43d449a8aca8d99d9ceecae2020-11-25T03:48:51ZengBMCBMC Infectious Diseases1471-23342005-03-01511010.1186/1471-2334-5-10Emergency vaccination of rabies under limited resources – combating or containing?Selhorst ThomasThulke Hans-HermannEisinger DirkMüller Thomas<p>Abstract</p> <p>Background</p> <p>Rabies is the most important viral zoonosis from a global perspective. Worldwide efforts to combat the disease by oral vaccination of reservoirs have managed to eradicate wildlife rabies in large areas of central Europe and North-America. Thus, repeated vaccination has been discontinued recently on a geographical scale. However, as rabies has not yet been eradicated globally, a serious risk of re-introduction remains. What is the best spatial design for an emergency vaccination program – particularly if resources are limited? Either, we treat a circular area around the detected case and run the risk of infected hosts leaving the limited control area, because a sufficient immunisation level has not yet been built up. Or, initially concentrate the SAME resources in order to establish a protective ring which is more distant from the infected local area, and which then holds out against the challenge of the approaching epidemic.</p> <p>Methods</p> <p>We developed a simulation model to contrast the two strategies for emergency vaccination. The spatial-explicit model is based on fox group home-ranges, which facilitates the simulation of rabies spread to larger areas relevant to management. We used individual-based fox groups to follow up the effects of vaccination in a detailed manner. Thus, regionally – bait distribution orientates itself to standard schemes of oral immunisation programs and locally – baits are assigned to individual foxes.</p> <p>Results</p> <p>Surprisingly, putting the controlled area ring-like around the outbreak does not outperform the circular area of the same size centred on the outbreak. Only during the very first baitings, does the ring area result in fewer breakouts. But then as rabies is eliminated within the circle area, the respective ring area fails, due to the non-controlled inner part.</p> <p>We attempt to take advantage of the initially fewer breakouts beyond the ring when applying a mixed strategy. Therefore, after a certain number of baitings, the area under control was increased for both strategies towards the same larger circular area. The circle-circle strategy still outperforms the ring-circle strategy and analysis of the spatial-temporal disease spread reveals why: improving control efficacy by means of a mixed strategy is impossible in the field, due to the build-up time of population immunity.</p> <p>Conclusion</p> <p>For practical emergency management of a new outbreak of rabies, the ring-like application of oral vaccination is not a favourable strategy at all. Even if initial resources are substantially low and there is a serious risk of rabies cases outside the limited control area, our results suggest circular application instead of ring vaccination.</p> http://www.biomedcentral.com/1471-2334/5/10
collection DOAJ
language English
format Article
sources DOAJ
author Selhorst Thomas
Thulke Hans-Hermann
Eisinger Dirk
Müller Thomas
spellingShingle Selhorst Thomas
Thulke Hans-Hermann
Eisinger Dirk
Müller Thomas
Emergency vaccination of rabies under limited resources – combating or containing?
BMC Infectious Diseases
author_facet Selhorst Thomas
Thulke Hans-Hermann
Eisinger Dirk
Müller Thomas
author_sort Selhorst Thomas
title Emergency vaccination of rabies under limited resources – combating or containing?
title_short Emergency vaccination of rabies under limited resources – combating or containing?
title_full Emergency vaccination of rabies under limited resources – combating or containing?
title_fullStr Emergency vaccination of rabies under limited resources – combating or containing?
title_full_unstemmed Emergency vaccination of rabies under limited resources – combating or containing?
title_sort emergency vaccination of rabies under limited resources – combating or containing?
publisher BMC
series BMC Infectious Diseases
issn 1471-2334
publishDate 2005-03-01
description <p>Abstract</p> <p>Background</p> <p>Rabies is the most important viral zoonosis from a global perspective. Worldwide efforts to combat the disease by oral vaccination of reservoirs have managed to eradicate wildlife rabies in large areas of central Europe and North-America. Thus, repeated vaccination has been discontinued recently on a geographical scale. However, as rabies has not yet been eradicated globally, a serious risk of re-introduction remains. What is the best spatial design for an emergency vaccination program – particularly if resources are limited? Either, we treat a circular area around the detected case and run the risk of infected hosts leaving the limited control area, because a sufficient immunisation level has not yet been built up. Or, initially concentrate the SAME resources in order to establish a protective ring which is more distant from the infected local area, and which then holds out against the challenge of the approaching epidemic.</p> <p>Methods</p> <p>We developed a simulation model to contrast the two strategies for emergency vaccination. The spatial-explicit model is based on fox group home-ranges, which facilitates the simulation of rabies spread to larger areas relevant to management. We used individual-based fox groups to follow up the effects of vaccination in a detailed manner. Thus, regionally – bait distribution orientates itself to standard schemes of oral immunisation programs and locally – baits are assigned to individual foxes.</p> <p>Results</p> <p>Surprisingly, putting the controlled area ring-like around the outbreak does not outperform the circular area of the same size centred on the outbreak. Only during the very first baitings, does the ring area result in fewer breakouts. But then as rabies is eliminated within the circle area, the respective ring area fails, due to the non-controlled inner part.</p> <p>We attempt to take advantage of the initially fewer breakouts beyond the ring when applying a mixed strategy. Therefore, after a certain number of baitings, the area under control was increased for both strategies towards the same larger circular area. The circle-circle strategy still outperforms the ring-circle strategy and analysis of the spatial-temporal disease spread reveals why: improving control efficacy by means of a mixed strategy is impossible in the field, due to the build-up time of population immunity.</p> <p>Conclusion</p> <p>For practical emergency management of a new outbreak of rabies, the ring-like application of oral vaccination is not a favourable strategy at all. Even if initial resources are substantially low and there is a serious risk of rabies cases outside the limited control area, our results suggest circular application instead of ring vaccination.</p>
url http://www.biomedcentral.com/1471-2334/5/10
work_keys_str_mv AT selhorstthomas emergencyvaccinationofrabiesunderlimitedresourcescombatingorcontaining
AT thulkehanshermann emergencyvaccinationofrabiesunderlimitedresourcescombatingorcontaining
AT eisingerdirk emergencyvaccinationofrabiesunderlimitedresourcescombatingorcontaining
AT mullerthomas emergencyvaccinationofrabiesunderlimitedresourcescombatingorcontaining
_version_ 1724496736029769728