Intermediate values and inverse functions on non-Archimedean fields

Continuity or even differentiability of a function on a closed interval of a non-Archimedean field are not sufficient for the function to assume all the intermediate values, a maximum, a minimum, or a unique primitive function on the interval. These problems are due to the total disconnectedness of...

Full description

Bibliographic Details
Main Authors: Khodr Shamseddine, Martin Berz
Format: Article
Language:English
Published: Hindawi Limited 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202013030
Description
Summary:Continuity or even differentiability of a function on a closed interval of a non-Archimedean field are not sufficient for the function to assume all the intermediate values, a maximum, a minimum, or a unique primitive function on the interval. These problems are due to the total disconnectedness of the field in the order topology. In this paper, we show that differentiability (in the topological sense), together with some additional mild conditions, is indeed sufficient to guarantee that the function assumes all intermediate values and has a differentiable inverse function.
ISSN:0161-1712
1687-0425