Vibration and Buckling Analysis of Moderately Thick Plates using Natural Element Method
Using natural element method (NEM), the buckling and the free vibration behaviors of moderate thick plates is studied here. The basis of NEM is natural neighbors and Voronoi cells concepts. The shape functions of nodes located in the domain is equal to the proportion of common natural neighbors...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Eftimie Murgu University of Resita
2015-07-01
|
Series: | Analele Universităţii "Eftimie Murgu" Reşiţa: Fascicola I, Inginerie |
Subjects: | |
Online Access: | http://anale-ing.uem.ro/2015/22.pdf |
Summary: | Using natural element method (NEM), the buckling and the free vibration
behaviors of moderate thick plates is studied here. The basis of
NEM is natural neighbors and Voronoi cells concepts. The shape functions
of nodes located in the domain is equal to the proportion of
common natural neighbors area divided by area that related by each
Voronoi cells. First step in analyzing the moderate thick plates is identification
boundaries. This is done by nodes scattering on problem domain.
Mindlin/Reissner theory is used to express the equations of moderate
thick plate. First and second order shape functions obtained from
natural element method are used to discretize differential equations.
Using numerical integration on whole discrete equations of domain,
stiffness, geometry and mass matrices of plate are obtained. Buckling
loads and vibration modes are expressed by substituting these matrices
in plate equations of motions. Arbitrary shapes of plate are selected for
solution. Comparing the results of the current approach with those obtained
by other numerical analytical methods, it is shown that natural
element method can solve problems with complex areas accurately. |
---|---|
ISSN: | 1453-7397 1453-7397 |