Summary: | This paper presents a new analytical approach, the Golden Method, to enhance sound-hole size and location in musical instruments of the lute family in order to obtain better sound damping characteristics based on the concept of the golden ratio and the instrument geometry. The main objective of the paper is to increase the capability of lute family musical instruments in keeping a note for a certain time at a certain level to enhance the instruments’ orchestral characteristics. For this purpose, a geometry-based analytical method, the Golden Method is first described in detail in an itemized feature. A new musical instrument is then developed and tested to confirm the ability of the Golden Method in optimizing the acoustical characteristics of musical instruments from a damping point of view by designing the modified sound-hole. Finally, the new-developed instrument is tested, and the obtained results are compared with those of two well-known instruments to confirm the effectiveness of the proposed method. The experimental results show that the suggested method is able to increase the sound damping time by at least 2.4% without affecting the frequency response function and other acoustic characteristics of the instrument. This methodology could be used as the first step in future studies on design, optimization and evaluation of musical instruments of the lute family (e.g., lute, oud, barbat, mandolin, setar, and etc.).
|