The effect of exercise-intensity on skeletal muscle stress kinase and insulin protein signaling.

BACKGROUND:Stress and mitogen activated protein kinase (SAPK) signaling play an important role in glucose homeostasis and the physiological adaptation to exercise. However, the effects of acute high-intensity interval exercise (HIIE) and sprint interval exercise (SIE) on activation of these signalin...

Full description

Bibliographic Details
Main Authors: Lewan Parker, Adam Trewin, Itamar Levinger, Christopher S Shaw, Nigel K Stepto
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5300197?pdf=render
Description
Summary:BACKGROUND:Stress and mitogen activated protein kinase (SAPK) signaling play an important role in glucose homeostasis and the physiological adaptation to exercise. However, the effects of acute high-intensity interval exercise (HIIE) and sprint interval exercise (SIE) on activation of these signaling pathways are unclear. METHODS:Eight young and recreationally active adults performed a single cycling session of HIIE (5 x 4 minutes at 75% Wmax), SIE (4 x 30 second Wingate sprints), and continuous moderate-intensity exercise work-matched to HIIE (CMIE; 30 minutes at 50% of Wmax), separated by a minimum of 1 week. Skeletal muscle SAPK and insulin protein signaling were measured immediately, and 3 hours after exercise. RESULTS:SIE elicited greater skeletal muscle NF-κB p65 phosphorylation immediately after exercise (SIE: ~40%; HIIE: ~4%; CMIE; ~13%; p < 0.05) compared to HIIE and CMIE. AS160Ser588 phosphorylation decreased immediately after HIIE (~-27%; p < 0.05), and decreased to the greatest extent immediately after SIE (~-60%; p < 0.05). Skeletal muscle JNK (~42%; p < 0.05) and p38 MAPK (~171%; p < 0.05) phosphorylation increased, and skeletal muscle AktSer473 phosphorylation (~-32%; p < 0.05) decreased, to a similar extent immediately after all exercise protocols. AS160Ser588 phosphorylation was similar to baseline three hours after SIE (~-12%; p > 0.05), remained lower 3 hours after HIIE (~-34%; p < 0.05), and decreased 3 hours after CMIE (~-33%; p < 0.05). CONCLUSION:Despite consisting of less total work than CMIE and HIIE, SIE proved to be an effective stimulus for the activation of stress protein kinase signaling pathways linked to exercise-mediated adaptation of skeletal muscle. Furthermore, post-exercise AS160Ser588 phosphorylation decreased in an exercise-intensity and post-exercise time-course dependent manner.
ISSN:1932-6203