Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems

<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/...

Full description

Bibliographic Details
Main Authors: Duan Peichao, Zhao Jing
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/528307
id doaj-2eb9ca5c4e4241fa88b756df1711be23
record_format Article
spelling doaj-2eb9ca5c4e4241fa88b756df1711be232020-11-25T00:38:28ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101528307Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium ProblemsDuan PeichaoZhao Jing<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/></inline-formula> of a real Hilbert space <inline-formula> <graphic file="1687-1812-2010-528307-i3.gif"/></inline-formula>. Consider the problem of finding a common element of the set of fixed point of these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by hybrid methods.</p>http://www.fixedpointtheoryandapplications.com/content/2010/528307
collection DOAJ
language English
format Article
sources DOAJ
author Duan Peichao
Zhao Jing
spellingShingle Duan Peichao
Zhao Jing
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
Fixed Point Theory and Applications
author_facet Duan Peichao
Zhao Jing
author_sort Duan Peichao
title Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_short Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_full Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_fullStr Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_full_unstemmed Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_sort strong convergence theorems by hybrid methods for strict pseudocontractions and equilibrium problems
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2010-01-01
description <p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/></inline-formula> of a real Hilbert space <inline-formula> <graphic file="1687-1812-2010-528307-i3.gif"/></inline-formula>. Consider the problem of finding a common element of the set of fixed point of these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by hybrid methods.</p>
url http://www.fixedpointtheoryandapplications.com/content/2010/528307
work_keys_str_mv AT duanpeichao strongconvergencetheoremsbyhybridmethodsforstrictpseudocontractionsandequilibriumproblems
AT zhaojing strongconvergencetheoremsbyhybridmethodsforstrictpseudocontractionsandequilibriumproblems
_version_ 1716137064022409216