Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2010/528307 |
id |
doaj-2eb9ca5c4e4241fa88b756df1711be23 |
---|---|
record_format |
Article |
spelling |
doaj-2eb9ca5c4e4241fa88b756df1711be232020-11-25T00:38:28ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101528307Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium ProblemsDuan PeichaoZhao Jing<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/></inline-formula> of a real Hilbert space <inline-formula> <graphic file="1687-1812-2010-528307-i3.gif"/></inline-formula>. Consider the problem of finding a common element of the set of fixed point of these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by hybrid methods.</p>http://www.fixedpointtheoryandapplications.com/content/2010/528307 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Duan Peichao Zhao Jing |
spellingShingle |
Duan Peichao Zhao Jing Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems Fixed Point Theory and Applications |
author_facet |
Duan Peichao Zhao Jing |
author_sort |
Duan Peichao |
title |
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems |
title_short |
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems |
title_full |
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems |
title_fullStr |
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems |
title_full_unstemmed |
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems |
title_sort |
strong convergence theorems by hybrid methods for strict pseudocontractions and equilibrium problems |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2010-01-01 |
description |
<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/></inline-formula> of a real Hilbert space <inline-formula> <graphic file="1687-1812-2010-528307-i3.gif"/></inline-formula>. Consider the problem of finding a common element of the set of fixed point of these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by hybrid methods.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2010/528307 |
work_keys_str_mv |
AT duanpeichao strongconvergencetheoremsbyhybridmethodsforstrictpseudocontractionsandequilibriumproblems AT zhaojing strongconvergencetheoremsbyhybridmethodsforstrictpseudocontractionsandequilibriumproblems |
_version_ |
1716137064022409216 |