Significance of abnormal 53BP1 expression as a novel molecular pathologic parameter of follicular-shaped B-cell lymphoid lesions in human digestive tract

Abstract The digestive tract is a common site of extranodal malignant lymphomas (MLs) and benign lymphoid lesions (BLs). TP53-binding protein 1 (53BP1) expression has been widely investigated in class switch recombination but rarely in human lymphoid tissues with respect to tumorigenesis. We previou...

Full description

Bibliographic Details
Main Authors: Luong Thi My Hanh, Katsuya Matsuda, Daisuke Niino, Hirokazu Kurohama, Masahiro Ito, Masahiro Nakashima
Format: Article
Language:English
Published: Nature Publishing Group 2021-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-82867-0
Description
Summary:Abstract The digestive tract is a common site of extranodal malignant lymphomas (MLs) and benign lymphoid lesions (BLs). TP53-binding protein 1 (53BP1) expression has been widely investigated in class switch recombination but rarely in human lymphoid tissues with respect to tumorigenesis. We previously reported that immunofluorescence (IF) analysis of 53BP1 nuclear foci (NF), reflecting DNA double strand breaks, is useful for estimating genomic instability in different tumor types. In this study, we evaluated the potential of IF-based analysis of 53BP1 expression in differentiating MLs from BLs. We examined 231 biopsied tissue samples of primary MLs and BLs in the digestive tract. The 53BP1 immunoreactivity pattern was determined by multicolor IF. Compared to BLs, MLs showed a high frequency of abnormal 53BP1 expression (p < 0.0001). Statistically, abnormal 53BP1 expression is an effective test for distinguishing follicular lymphomas from BLs (specificity 98.6%, sensitivity 86.8%) and for distinguishing small B-cell lymphomas from BLs (specificity 98.3%, sensitivity 77.6%). Furthermore, a high frequency of abnormal 53BP1 expression was associated with “high-risk” MALT lymphomas, which exhibited t(11;18)(q21;21) (p = 0.0145). Collectively, these results suggest that IF-based analysis of 53BP1 expression in biopsy samples is a promising technique for diagnosing MLs in the digestive system.
ISSN:2045-2322