Unravelling the characteristics of Al-alloy corrosion at the atomic to nanometre scale by transmission electron microscopy

The localised corrosion associated with Mg2Si in the Al-matrix of an Al-Mg-Si alloy was studied in 0.1 M NaCl at pH 6 by quasi in-situ transmission electron microscopy. Herein, physical imaging of corrosion at the atomic to nanometre scale was performed. Phase transformation and subsequent chemical...

Full description

Bibliographic Details
Main Authors: Kairy Shravan K., Birbilis Nick
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2020/22/matecconf_icaa172020_01007.pdf
Description
Summary:The localised corrosion associated with Mg2Si in the Al-matrix of an Al-Mg-Si alloy was studied in 0.1 M NaCl at pH 6 by quasi in-situ transmission electron microscopy. Herein, physical imaging of corrosion at the atomic to nanometre scale was performed. Phase transformation and subsequent chemical composition variations associated with the localised corrosion of Mg2Si were studied. It was observed that corrosion initiated upon Mg2Si, often preferentially at the interface with the Al-matrix, and propagated until Mg2Si was completely dealloyed by Mg-dissolution, resulting in an amorphous SiO-rich phase remnant. The SiO-rich remnant became electrochemically inert and did not initiate corrosion in the Al-matrix. This study provides a clear understanding on the localised corrosion of Al-alloys associated with Mg2Si. In addition, the methodology followed in this study can also be applied to understand the role of precipitates and second phase particles in the localised corrosion of Al-alloy systems.
ISSN:2261-236X