A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4

We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, a...

Full description

Bibliographic Details
Main Authors: Bert Janssen, Alejandro Jiménez-Cano, José Alberto Orejuela
Format: Article
Language:English
Published: Elsevier 2019-08-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269319303806
id doaj-2e41bb3ee95e4011ad5bde2498c3d566
record_format Article
spelling doaj-2e41bb3ee95e4011ad5bde2498c3d5662020-11-25T00:28:02ZengElsevierPhysics Letters B0370-26932019-08-017954248A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4Bert Janssen0Alejandro Jiménez-Cano1José Alberto Orejuela2Corresponding author.; Departamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas Elementales, Facultad de Ciencias, Avda Fuentenueva s/n, Universidad de Granada, 18071 Granada, SpainDepartamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas Elementales, Facultad de Ciencias, Avda Fuentenueva s/n, Universidad de Granada, 18071 Granada, SpainDepartamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas Elementales, Facultad de Ciencias, Avda Fuentenueva s/n, Universidad de Granada, 18071 Granada, SpainWe study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for the specific case of the four-dimensional metric-affine Gauss–Bonnet action, for arbitrary vector fields. The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss–Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical structure of the set of solutions within the space of connections.http://www.sciencedirect.com/science/article/pii/S0370269319303806
collection DOAJ
language English
format Article
sources DOAJ
author Bert Janssen
Alejandro Jiménez-Cano
José Alberto Orejuela
spellingShingle Bert Janssen
Alejandro Jiménez-Cano
José Alberto Orejuela
A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
Physics Letters B
author_facet Bert Janssen
Alejandro Jiménez-Cano
José Alberto Orejuela
author_sort Bert Janssen
title A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
title_short A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
title_full A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
title_fullStr A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
title_full_unstemmed A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
title_sort non-trivial connection for the metric-affine gauss–bonnet theory in d = 4
publisher Elsevier
series Physics Letters B
issn 0370-2693
publishDate 2019-08-01
description We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for the specific case of the four-dimensional metric-affine Gauss–Bonnet action, for arbitrary vector fields. The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss–Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical structure of the set of solutions within the space of connections.
url http://www.sciencedirect.com/science/article/pii/S0370269319303806
work_keys_str_mv AT bertjanssen anontrivialconnectionforthemetricaffinegaussbonnettheoryind4
AT alejandrojimenezcano anontrivialconnectionforthemetricaffinegaussbonnettheoryind4
AT josealbertoorejuela anontrivialconnectionforthemetricaffinegaussbonnettheoryind4
AT bertjanssen nontrivialconnectionforthemetricaffinegaussbonnettheoryind4
AT alejandrojimenezcano nontrivialconnectionforthemetricaffinegaussbonnettheoryind4
AT josealbertoorejuela nontrivialconnectionforthemetricaffinegaussbonnettheoryind4
_version_ 1725337172727300096