A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4
We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-08-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269319303806 |
id |
doaj-2e41bb3ee95e4011ad5bde2498c3d566 |
---|---|
record_format |
Article |
spelling |
doaj-2e41bb3ee95e4011ad5bde2498c3d5662020-11-25T00:28:02ZengElsevierPhysics Letters B0370-26932019-08-017954248A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4Bert Janssen0Alejandro Jiménez-Cano1José Alberto Orejuela2Corresponding author.; Departamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas Elementales, Facultad de Ciencias, Avda Fuentenueva s/n, Universidad de Granada, 18071 Granada, SpainDepartamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas Elementales, Facultad de Ciencias, Avda Fuentenueva s/n, Universidad de Granada, 18071 Granada, SpainDepartamento de Física Teórica y del Cosmos and Centro Andaluz de Física de Partículas Elementales, Facultad de Ciencias, Avda Fuentenueva s/n, Universidad de Granada, 18071 Granada, SpainWe study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for the specific case of the four-dimensional metric-affine Gauss–Bonnet action, for arbitrary vector fields. The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss–Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical structure of the set of solutions within the space of connections.http://www.sciencedirect.com/science/article/pii/S0370269319303806 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bert Janssen Alejandro Jiménez-Cano José Alberto Orejuela |
spellingShingle |
Bert Janssen Alejandro Jiménez-Cano José Alberto Orejuela A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4 Physics Letters B |
author_facet |
Bert Janssen Alejandro Jiménez-Cano José Alberto Orejuela |
author_sort |
Bert Janssen |
title |
A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4 |
title_short |
A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4 |
title_full |
A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4 |
title_fullStr |
A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4 |
title_full_unstemmed |
A non-trivial connection for the metric-affine Gauss–Bonnet theory in D = 4 |
title_sort |
non-trivial connection for the metric-affine gauss–bonnet theory in d = 4 |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 |
publishDate |
2019-08-01 |
description |
We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for the specific case of the four-dimensional metric-affine Gauss–Bonnet action, for arbitrary vector fields. The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss–Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical structure of the set of solutions within the space of connections. |
url |
http://www.sciencedirect.com/science/article/pii/S0370269319303806 |
work_keys_str_mv |
AT bertjanssen anontrivialconnectionforthemetricaffinegaussbonnettheoryind4 AT alejandrojimenezcano anontrivialconnectionforthemetricaffinegaussbonnettheoryind4 AT josealbertoorejuela anontrivialconnectionforthemetricaffinegaussbonnettheoryind4 AT bertjanssen nontrivialconnectionforthemetricaffinegaussbonnettheoryind4 AT alejandrojimenezcano nontrivialconnectionforthemetricaffinegaussbonnettheoryind4 AT josealbertoorejuela nontrivialconnectionforthemetricaffinegaussbonnettheoryind4 |
_version_ |
1725337172727300096 |