Stochastic and Quantum Thermodynamics of Driven RLC Networks
We develop a general stochastic thermodynamics of RLC electrical networks built on top of a graph-theoretical representation of the dynamics commonly used by engineers. The network is (i) open, as it contains resistors and current and voltage sources, (ii) nonisothermal, as resistors may be at diffe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-07-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.10.031005 |
id |
doaj-2e403d5c07204123996cbf154b3375a8 |
---|---|
record_format |
Article |
spelling |
doaj-2e403d5c07204123996cbf154b3375a82020-11-25T03:07:14ZengAmerican Physical SocietyPhysical Review X2160-33082020-07-0110303100510.1103/PhysRevX.10.031005Stochastic and Quantum Thermodynamics of Driven RLC NetworksNahuel FreitasJean-Charles DelvenneMassimiliano EspositoWe develop a general stochastic thermodynamics of RLC electrical networks built on top of a graph-theoretical representation of the dynamics commonly used by engineers. The network is (i) open, as it contains resistors and current and voltage sources, (ii) nonisothermal, as resistors may be at different temperatures, and (iii) driven, as circuit elements may be subjected to external parametric driving. The proper description of the heat dissipated in each resistor requires care within the white-noise idealization as it depends on the network topology. Our theory provides the basis to design circuits-based thermal machines, as we illustrate by designing a refrigerator using a simple driven circuit. We also derive exact results for the low-temperature regime in which the quantum nature of the electrical noise must be taken into account. We do so using a semiclassical approach, which can be shown to coincide with a fully quantum treatment of linear circuits for which canonical quantization is possible. We use this approach to generalize the Landauer-Büttiker formula for energy currents to arbitrary time-dependent driving protocols.http://doi.org/10.1103/PhysRevX.10.031005 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nahuel Freitas Jean-Charles Delvenne Massimiliano Esposito |
spellingShingle |
Nahuel Freitas Jean-Charles Delvenne Massimiliano Esposito Stochastic and Quantum Thermodynamics of Driven RLC Networks Physical Review X |
author_facet |
Nahuel Freitas Jean-Charles Delvenne Massimiliano Esposito |
author_sort |
Nahuel Freitas |
title |
Stochastic and Quantum Thermodynamics of Driven RLC Networks |
title_short |
Stochastic and Quantum Thermodynamics of Driven RLC Networks |
title_full |
Stochastic and Quantum Thermodynamics of Driven RLC Networks |
title_fullStr |
Stochastic and Quantum Thermodynamics of Driven RLC Networks |
title_full_unstemmed |
Stochastic and Quantum Thermodynamics of Driven RLC Networks |
title_sort |
stochastic and quantum thermodynamics of driven rlc networks |
publisher |
American Physical Society |
series |
Physical Review X |
issn |
2160-3308 |
publishDate |
2020-07-01 |
description |
We develop a general stochastic thermodynamics of RLC electrical networks built on top of a graph-theoretical representation of the dynamics commonly used by engineers. The network is (i) open, as it contains resistors and current and voltage sources, (ii) nonisothermal, as resistors may be at different temperatures, and (iii) driven, as circuit elements may be subjected to external parametric driving. The proper description of the heat dissipated in each resistor requires care within the white-noise idealization as it depends on the network topology. Our theory provides the basis to design circuits-based thermal machines, as we illustrate by designing a refrigerator using a simple driven circuit. We also derive exact results for the low-temperature regime in which the quantum nature of the electrical noise must be taken into account. We do so using a semiclassical approach, which can be shown to coincide with a fully quantum treatment of linear circuits for which canonical quantization is possible. We use this approach to generalize the Landauer-Büttiker formula for energy currents to arbitrary time-dependent driving protocols. |
url |
http://doi.org/10.1103/PhysRevX.10.031005 |
work_keys_str_mv |
AT nahuelfreitas stochasticandquantumthermodynamicsofdrivenrlcnetworks AT jeancharlesdelvenne stochasticandquantumthermodynamicsofdrivenrlcnetworks AT massimilianoesposito stochasticandquantumthermodynamicsofdrivenrlcnetworks |
_version_ |
1715301823398543360 |