Ant_ViBe: Improved ViBe Algorithm Based on Ant Colony Clustering under Dynamic Background

Foreground target detection algorithm (FTDA) is a fundamental preprocessing step in computer vision and video processing. A universal background subtraction algorithm for video sequences (ViBe) is a fast, simple, efficient and with optimal sample attenuation FTDA based on background modeling. Howeve...

Full description

Bibliographic Details
Main Authors: Yingying Yue, Dan Xu, Zhiming Qian, Hongzhen Shi, Hao Zhang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/7478626
Description
Summary:Foreground target detection algorithm (FTDA) is a fundamental preprocessing step in computer vision and video processing. A universal background subtraction algorithm for video sequences (ViBe) is a fast, simple, efficient and with optimal sample attenuation FTDA based on background modeling. However, the traditional ViBe has three limitations: (1) the noise problem under dynamic background; (2) the ghost problem; and (3) the target adhesion problem. In order to solve the three problems above, ant colony clustering is introduced and Ant_ViBe is proposed in this paper to improve the background modeling mechanism of the traditional ViBe, from the aspects of initial sample modeling, pheromone and ant colony update mechanism, and foreground segmentation criterion. Experimental results show that the Ant_ViBe greatly improved the noise resistance under dynamic background, eased the ghost and targets adhesion problem, and surpassed the typical algorithms and their fusion algorithms in most evaluation indexes.
ISSN:1024-123X
1563-5147