An approach based on matrix polynomials for linear systems of partial differential equations

Bibliographic Details
Main Authors: Shayanfar N., Hadizadeh M.
Format: Article
Language:English
Published: De Gruyter 2013-12-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.2478/spma-2013-0007
id doaj-2e25dd776d28467f88cb946b9a655827
record_format Article
spelling doaj-2e25dd776d28467f88cb946b9a6558272021-10-02T17:49:17ZengDe GruyterSpecial Matrices2300-74512013-12-0112013424810.2478/spma-2013-0007An approach based on matrix polynomials for linear systems of partial differential equationsShayanfar N.Hadizadeh M.https://doi.org/10.2478/spma-2013-0007linear system of partial differential equations linear operator matrix polynomial smith canonical form numerical treatment35f3535g0565a9915a23
collection DOAJ
language English
format Article
sources DOAJ
author Shayanfar N.
Hadizadeh M.
spellingShingle Shayanfar N.
Hadizadeh M.
An approach based on matrix polynomials for linear systems of partial differential equations
Special Matrices
linear system of partial differential equations
linear operator
matrix polynomial
smith canonical form
numerical treatment
35f35
35g05
65a99
15a23
author_facet Shayanfar N.
Hadizadeh M.
author_sort Shayanfar N.
title An approach based on matrix polynomials for linear systems of partial differential equations
title_short An approach based on matrix polynomials for linear systems of partial differential equations
title_full An approach based on matrix polynomials for linear systems of partial differential equations
title_fullStr An approach based on matrix polynomials for linear systems of partial differential equations
title_full_unstemmed An approach based on matrix polynomials for linear systems of partial differential equations
title_sort approach based on matrix polynomials for linear systems of partial differential equations
publisher De Gruyter
series Special Matrices
issn 2300-7451
publishDate 2013-12-01
topic linear system of partial differential equations
linear operator
matrix polynomial
smith canonical form
numerical treatment
35f35
35g05
65a99
15a23
url https://doi.org/10.2478/spma-2013-0007
work_keys_str_mv AT shayanfarn anapproachbasedonmatrixpolynomialsforlinearsystemsofpartialdifferentialequations
AT hadizadehm anapproachbasedonmatrixpolynomialsforlinearsystemsofpartialdifferentialequations
AT shayanfarn approachbasedonmatrixpolynomialsforlinearsystemsofpartialdifferentialequations
AT hadizadehm approachbasedonmatrixpolynomialsforlinearsystemsofpartialdifferentialequations
_version_ 1716850373200707584