Modeling and Efficiency Prediction of Aeroengine Centrifugal Pump Integrated Loss Model Based on One-Dimensional Flow
This paper was presented a method of integrated loss model by considering all kinds of loss type in centrifugal pumps. The geometric structure and loss mechanism of the flow parts in the centrifugal pump were analyzed, such as suction chamber, impeller, vaneless diffuser chamber, volute type water c...
Format: | Article |
---|---|
Language: | zho |
Published: |
The Northwestern Polytechnical University
2018-10-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/pdf/2018/05/jnwpu2018365p807.pdf |
Summary: | This paper was presented a method of integrated loss model by considering all kinds of loss type in centrifugal pumps. The geometric structure and loss mechanism of the flow parts in the centrifugal pump were analyzed, such as suction chamber, impeller, vaneless diffuser chamber, volute type water collecting chamber and outlet diffusion section. The hydraulic loss model, volume loss model, friction loss and mechanical loss model of centrifugal pump were established respectively by combining the flow theory. Finally, an integrated loss model of centrifugal pump was constructed, which can establish the relationship between the 12 main design parameters and pump efficiency of the centrifugal pump. Then the performance prediction of an aeroengine fuel centrifugal pump was carried out based on the loss model, and the loss model predictions were compared with the experimental data and CFD simulation performance prediction data. Simulation results show that:The efficiency predicted value relative error of centrifugal pump is less than 2.8% between the loss model and the experimental data. The computational efficiency of CFD is less than 4.4% compared with the experimental data in the design condition. The relative error is about 1.6% between the CFD method and the loss model which shows that the loss model predicts efficiency accuracy is better than the CFD method. It shows that this method can be used to predict the efficiency performance of centrifugal pump under design process. |
---|---|
ISSN: | 1000-2758 2609-7125 |