Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure

This theoretical study is devoted to the effects of pressure and temperature on the optoelectronic properties assigned to the first lowest transition of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow>...

Full description

Bibliographic Details
Main Authors: Noreddine Aghoutane, Laura M. Pérez, Anton Tiutiunnyk, David Laroze, Sotirios Baskoutas, Francis Dujardin, Abdelouahad El Fatimy, Mohamed El-Yadri, El Mustapha Feddi
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/13/5969
id doaj-2df51a0557b447bf83ffb5a66df65f3f
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Noreddine Aghoutane
Laura M. Pérez
Anton Tiutiunnyk
David Laroze
Sotirios Baskoutas
Francis Dujardin
Abdelouahad El Fatimy
Mohamed El-Yadri
El Mustapha Feddi
spellingShingle Noreddine Aghoutane
Laura M. Pérez
Anton Tiutiunnyk
David Laroze
Sotirios Baskoutas
Francis Dujardin
Abdelouahad El Fatimy
Mohamed El-Yadri
El Mustapha Feddi
Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure
Applied Sciences
terahertz properties
quantum dots
(<i>D</i><sup>+</sup>, <i>X</i>) complex
temperature
pressure
author_facet Noreddine Aghoutane
Laura M. Pérez
Anton Tiutiunnyk
David Laroze
Sotirios Baskoutas
Francis Dujardin
Abdelouahad El Fatimy
Mohamed El-Yadri
El Mustapha Feddi
author_sort Noreddine Aghoutane
title Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure
title_short Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure
title_full Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure
title_fullStr Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure
title_full_unstemmed Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure
title_sort adjustment of terahertz properties assigned to the first lowest transition of (<i>d</i><sup>+</sup>, <i>x</i>) excitonic complex in a single spherical quantum dot using temperature and pressure
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2021-06-01
description This theoretical study is devoted to the effects of pressure and temperature on the optoelectronic properties assigned to the first lowest transition of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>D</mi><mo>+</mo></msup><mo>,</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> excitonic complex (exciton-ionized donor) inside a single <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>l</mi><mi>A</mi><mi>s</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>A</mi><mi>s</mi><mo>/</mo><mi>A</mi><mi>l</mi><mi>A</mi><mi>s</mi></mrow></semantics></math></inline-formula> spherical quantum dot. Calculations are performed within the effective mass approximation theory using the variational method. Optical absorption and refractive index as function of the degree of confinement, pressure, and temperature are investigated. Numerical calculation shows that the pressure favors the electron-hole and electron-ionized donor attractions which leads to an enhancement of the binding energy, while an increasing of the temperature tends to reduce it. Our investigations show also that the resonant peaks of the absorption coefficient and the refractive index are located in the terahertz region and they undergo a shift to higher (lower) therahertz frequencies when the pressure (temperature) increases. The opposite effects caused by temperature and pressure have great practical importance because they offer an alternative approach for the adjustment and the control of the optical frequencies resulting from the transition between the fundamental and the first excited state of exciton bound to an ionized dopant. The comparison of the optical properties of exciton, impurity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>D</mi><mo>+</mo></msup><mo>,</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> facilitates the experimental identification of these transitions which are often close. Our investigation shows that the optical responses of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>D</mi><mo>+</mo></msup><mo>,</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> are located between the exciton (high energy region) and donor impurity (low energy region) peaks. The whole of these conclusions may lead to the novel light detector or source of terahertz range.
topic terahertz properties
quantum dots
(<i>D</i><sup>+</sup>, <i>X</i>) complex
temperature
pressure
url https://www.mdpi.com/2076-3417/11/13/5969
work_keys_str_mv AT noreddineaghoutane adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT lauramperez adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT antontiutiunnyk adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT davidlaroze adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT sotiriosbaskoutas adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT francisdujardin adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT abdelouahadelfatimy adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT mohamedelyadri adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
AT elmustaphafeddi adjustmentofterahertzpropertiesassignedtothefirstlowesttransitionofidisupsupixiexcitoniccomplexinasinglesphericalquantumdotusingtemperatureandpressure
_version_ 1721299999071928320
spelling doaj-2df51a0557b447bf83ffb5a66df65f3f2021-07-15T15:30:08ZengMDPI AGApplied Sciences2076-34172021-06-01115969596910.3390/app11135969Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (<i>D</i><sup>+</sup>, <i>X</i>) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and PressureNoreddine Aghoutane0Laura M. Pérez1Anton Tiutiunnyk2David Laroze3Sotirios Baskoutas4Francis Dujardin5Abdelouahad El Fatimy6Mohamed El-Yadri7El Mustapha Feddi8Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Rabat 10100, MoroccoInstituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, ChileInstituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, ChileInstituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, ChileDepartment of Materials Science, University of Patras, GR-26504 Patras, GreeceLaboratoire de Chimie et Physique-Approche Multi-échelles des Milieux Complexes, Université de Lorraine, LCP-A2MC, F-57000 Metz, FranceCentral European Institute of Technology, Brno University of Technology, 60190 Brno, Czech RepublicGroup of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Rabat 10100, MoroccoGroup of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Rabat 10100, MoroccoThis theoretical study is devoted to the effects of pressure and temperature on the optoelectronic properties assigned to the first lowest transition of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>D</mi><mo>+</mo></msup><mo>,</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> excitonic complex (exciton-ionized donor) inside a single <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>l</mi><mi>A</mi><mi>s</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>A</mi><mi>s</mi><mo>/</mo><mi>A</mi><mi>l</mi><mi>A</mi><mi>s</mi></mrow></semantics></math></inline-formula> spherical quantum dot. Calculations are performed within the effective mass approximation theory using the variational method. Optical absorption and refractive index as function of the degree of confinement, pressure, and temperature are investigated. Numerical calculation shows that the pressure favors the electron-hole and electron-ionized donor attractions which leads to an enhancement of the binding energy, while an increasing of the temperature tends to reduce it. Our investigations show also that the resonant peaks of the absorption coefficient and the refractive index are located in the terahertz region and they undergo a shift to higher (lower) therahertz frequencies when the pressure (temperature) increases. The opposite effects caused by temperature and pressure have great practical importance because they offer an alternative approach for the adjustment and the control of the optical frequencies resulting from the transition between the fundamental and the first excited state of exciton bound to an ionized dopant. The comparison of the optical properties of exciton, impurity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>D</mi><mo>+</mo></msup><mo>,</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> facilitates the experimental identification of these transitions which are often close. Our investigation shows that the optical responses of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>D</mi><mo>+</mo></msup><mo>,</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> are located between the exciton (high energy region) and donor impurity (low energy region) peaks. The whole of these conclusions may lead to the novel light detector or source of terahertz range.https://www.mdpi.com/2076-3417/11/13/5969terahertz propertiesquantum dots(<i>D</i><sup>+</sup>, <i>X</i>) complextemperaturepressure