Compact Weighted Composition Operators and Fixed Points in Convex Domains
<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-028750-i1.gif"/></inline-formula> be a bounded, convex domain in <inline-formula><graphic file="1687-1812-2007-028750-i2.gif"/></inline-formula>, and suppose that <inline-...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2007/028750 |
id |
doaj-2dd4ea250f2643f09b82cb61aff0cb9f |
---|---|
record_format |
Article |
spelling |
doaj-2dd4ea250f2643f09b82cb61aff0cb9f2020-11-24T20:57:59ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071028750Compact Weighted Composition Operators and Fixed Points in Convex DomainsClahane Dana D<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-028750-i1.gif"/></inline-formula> be a bounded, convex domain in <inline-formula><graphic file="1687-1812-2007-028750-i2.gif"/></inline-formula>, and suppose that <inline-formula><graphic file="1687-1812-2007-028750-i3.gif"/></inline-formula> is holomorphic. Assume that <inline-formula><graphic file="1687-1812-2007-028750-i4.gif"/></inline-formula> is analytic, bounded away from zero toward the boundary of <inline-formula><graphic file="1687-1812-2007-028750-i5.gif"/></inline-formula>, and not identically zero on the fixed point set of <inline-formula><graphic file="1687-1812-2007-028750-i6.gif"/></inline-formula>. Suppose also that the weighted composition operator <inline-formula><graphic file="1687-1812-2007-028750-i7.gif"/></inline-formula> given by <inline-formula><graphic file="1687-1812-2007-028750-i8.gif"/></inline-formula> is compact on a holomorphic, functional Hilbert space (containing the polynomial functions densely) on <inline-formula><graphic file="1687-1812-2007-028750-i9.gif"/></inline-formula> with reproducing kernel <inline-formula><graphic file="1687-1812-2007-028750-i10.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-1812-2007-028750-i11.gif"/></inline-formula> as <inline-formula><graphic file="1687-1812-2007-028750-i12.gif"/></inline-formula>. We extend the results of J. Caughran/H. Schwartz for unweighted composition operators on the Hardy space of the unit disk and B. MacCluer on the ball by showing that <inline-formula><graphic file="1687-1812-2007-028750-i13.gif"/></inline-formula> has a unique fixed point in <inline-formula><graphic file="1687-1812-2007-028750-i14.gif"/></inline-formula>. We apply this result by making a reasonable conjecture about the spectrum of <inline-formula><graphic file="1687-1812-2007-028750-i15.gif"/></inline-formula> based on previous results.</p> http://www.fixedpointtheoryandapplications.com/content/2007/028750 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Clahane Dana D |
spellingShingle |
Clahane Dana D Compact Weighted Composition Operators and Fixed Points in Convex Domains Fixed Point Theory and Applications |
author_facet |
Clahane Dana D |
author_sort |
Clahane Dana D |
title |
Compact Weighted Composition Operators and Fixed Points in Convex Domains |
title_short |
Compact Weighted Composition Operators and Fixed Points in Convex Domains |
title_full |
Compact Weighted Composition Operators and Fixed Points in Convex Domains |
title_fullStr |
Compact Weighted Composition Operators and Fixed Points in Convex Domains |
title_full_unstemmed |
Compact Weighted Composition Operators and Fixed Points in Convex Domains |
title_sort |
compact weighted composition operators and fixed points in convex domains |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2007-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-028750-i1.gif"/></inline-formula> be a bounded, convex domain in <inline-formula><graphic file="1687-1812-2007-028750-i2.gif"/></inline-formula>, and suppose that <inline-formula><graphic file="1687-1812-2007-028750-i3.gif"/></inline-formula> is holomorphic. Assume that <inline-formula><graphic file="1687-1812-2007-028750-i4.gif"/></inline-formula> is analytic, bounded away from zero toward the boundary of <inline-formula><graphic file="1687-1812-2007-028750-i5.gif"/></inline-formula>, and not identically zero on the fixed point set of <inline-formula><graphic file="1687-1812-2007-028750-i6.gif"/></inline-formula>. Suppose also that the weighted composition operator <inline-formula><graphic file="1687-1812-2007-028750-i7.gif"/></inline-formula> given by <inline-formula><graphic file="1687-1812-2007-028750-i8.gif"/></inline-formula> is compact on a holomorphic, functional Hilbert space (containing the polynomial functions densely) on <inline-formula><graphic file="1687-1812-2007-028750-i9.gif"/></inline-formula> with reproducing kernel <inline-formula><graphic file="1687-1812-2007-028750-i10.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-1812-2007-028750-i11.gif"/></inline-formula> as <inline-formula><graphic file="1687-1812-2007-028750-i12.gif"/></inline-formula>. We extend the results of J. Caughran/H. Schwartz for unweighted composition operators on the Hardy space of the unit disk and B. MacCluer on the ball by showing that <inline-formula><graphic file="1687-1812-2007-028750-i13.gif"/></inline-formula> has a unique fixed point in <inline-formula><graphic file="1687-1812-2007-028750-i14.gif"/></inline-formula>. We apply this result by making a reasonable conjecture about the spectrum of <inline-formula><graphic file="1687-1812-2007-028750-i15.gif"/></inline-formula> based on previous results.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2007/028750 |
work_keys_str_mv |
AT clahanedanad compactweightedcompositionoperatorsandfixedpointsinconvexdomains |
_version_ |
1716786818216624128 |