Compact Weighted Composition Operators and Fixed Points in Convex Domains

<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-028750-i1.gif"/></inline-formula> be a bounded, convex domain in <inline-formula><graphic file="1687-1812-2007-028750-i2.gif"/></inline-formula>, and suppose that <inline-...

Full description

Bibliographic Details
Main Author: Clahane Dana D
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2007/028750
id doaj-2dd4ea250f2643f09b82cb61aff0cb9f
record_format Article
spelling doaj-2dd4ea250f2643f09b82cb61aff0cb9f2020-11-24T20:57:59ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071028750Compact Weighted Composition Operators and Fixed Points in Convex DomainsClahane Dana D<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-028750-i1.gif"/></inline-formula> be a bounded, convex domain in <inline-formula><graphic file="1687-1812-2007-028750-i2.gif"/></inline-formula>, and suppose that <inline-formula><graphic file="1687-1812-2007-028750-i3.gif"/></inline-formula> is holomorphic. Assume that <inline-formula><graphic file="1687-1812-2007-028750-i4.gif"/></inline-formula> is analytic, bounded away from zero toward the boundary of <inline-formula><graphic file="1687-1812-2007-028750-i5.gif"/></inline-formula>, and not identically zero on the fixed point set of <inline-formula><graphic file="1687-1812-2007-028750-i6.gif"/></inline-formula>. Suppose also that the weighted composition operator <inline-formula><graphic file="1687-1812-2007-028750-i7.gif"/></inline-formula> given by <inline-formula><graphic file="1687-1812-2007-028750-i8.gif"/></inline-formula> is compact on a holomorphic, functional Hilbert space (containing the polynomial functions densely) on <inline-formula><graphic file="1687-1812-2007-028750-i9.gif"/></inline-formula> with reproducing kernel <inline-formula><graphic file="1687-1812-2007-028750-i10.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-1812-2007-028750-i11.gif"/></inline-formula> as <inline-formula><graphic file="1687-1812-2007-028750-i12.gif"/></inline-formula>. We extend the results of J. Caughran/H. Schwartz for unweighted composition operators on the Hardy space of the unit disk and B. MacCluer on the ball by showing that <inline-formula><graphic file="1687-1812-2007-028750-i13.gif"/></inline-formula> has a unique fixed point in <inline-formula><graphic file="1687-1812-2007-028750-i14.gif"/></inline-formula>. We apply this result by making a reasonable conjecture about the spectrum of <inline-formula><graphic file="1687-1812-2007-028750-i15.gif"/></inline-formula> based on previous results.</p> http://www.fixedpointtheoryandapplications.com/content/2007/028750
collection DOAJ
language English
format Article
sources DOAJ
author Clahane Dana D
spellingShingle Clahane Dana D
Compact Weighted Composition Operators and Fixed Points in Convex Domains
Fixed Point Theory and Applications
author_facet Clahane Dana D
author_sort Clahane Dana D
title Compact Weighted Composition Operators and Fixed Points in Convex Domains
title_short Compact Weighted Composition Operators and Fixed Points in Convex Domains
title_full Compact Weighted Composition Operators and Fixed Points in Convex Domains
title_fullStr Compact Weighted Composition Operators and Fixed Points in Convex Domains
title_full_unstemmed Compact Weighted Composition Operators and Fixed Points in Convex Domains
title_sort compact weighted composition operators and fixed points in convex domains
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2007-01-01
description <p/> <p>Let <inline-formula><graphic file="1687-1812-2007-028750-i1.gif"/></inline-formula> be a bounded, convex domain in <inline-formula><graphic file="1687-1812-2007-028750-i2.gif"/></inline-formula>, and suppose that <inline-formula><graphic file="1687-1812-2007-028750-i3.gif"/></inline-formula> is holomorphic. Assume that <inline-formula><graphic file="1687-1812-2007-028750-i4.gif"/></inline-formula> is analytic, bounded away from zero toward the boundary of <inline-formula><graphic file="1687-1812-2007-028750-i5.gif"/></inline-formula>, and not identically zero on the fixed point set of <inline-formula><graphic file="1687-1812-2007-028750-i6.gif"/></inline-formula>. Suppose also that the weighted composition operator <inline-formula><graphic file="1687-1812-2007-028750-i7.gif"/></inline-formula> given by <inline-formula><graphic file="1687-1812-2007-028750-i8.gif"/></inline-formula> is compact on a holomorphic, functional Hilbert space (containing the polynomial functions densely) on <inline-formula><graphic file="1687-1812-2007-028750-i9.gif"/></inline-formula> with reproducing kernel <inline-formula><graphic file="1687-1812-2007-028750-i10.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-1812-2007-028750-i11.gif"/></inline-formula> as <inline-formula><graphic file="1687-1812-2007-028750-i12.gif"/></inline-formula>. We extend the results of J. Caughran/H. Schwartz for unweighted composition operators on the Hardy space of the unit disk and B. MacCluer on the ball by showing that <inline-formula><graphic file="1687-1812-2007-028750-i13.gif"/></inline-formula> has a unique fixed point in <inline-formula><graphic file="1687-1812-2007-028750-i14.gif"/></inline-formula>. We apply this result by making a reasonable conjecture about the spectrum of <inline-formula><graphic file="1687-1812-2007-028750-i15.gif"/></inline-formula> based on previous results.</p>
url http://www.fixedpointtheoryandapplications.com/content/2007/028750
work_keys_str_mv AT clahanedanad compactweightedcompositionoperatorsandfixedpointsinconvexdomains
_version_ 1716786818216624128