Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues

Abstract Let G be a simple connected graph and S 2 ( G ) $S_{2}(G)$ be the sum of the two largest Laplacian eigenvalues of G. In this paper, we determine the bicyclic graph with maximum S 2 ( G ) $S_{2}(G)$ among all bicyclic graphs of order n, which confirms the conjecture of Guan et al. (J. Inequa...

Full description

Bibliographic Details
Main Authors: Yirong Zheng, An Chang, Jianxi Li, Sa Rula
Format: Article
Language:English
Published: SpringerOpen 2016-11-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1235-5
id doaj-2dbc35b74b5241bd980955a573e11f0c
record_format Article
spelling doaj-2dbc35b74b5241bd980955a573e11f0c2020-11-24T22:23:50ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-11-012016111710.1186/s13660-016-1235-5Bicyclic graphs with maximum sum of the two largest Laplacian eigenvaluesYirong Zheng0An Chang1Jianxi Li2Sa Rula3School of Applied Mathematics, Xiamen University of TechnologyCenter for Discrete Mathematics, Fuzhou UniversityCenter for Discrete Mathematics, Fuzhou UniversityCenter for Discrete Mathematics, Fuzhou UniversityAbstract Let G be a simple connected graph and S 2 ( G ) $S_{2}(G)$ be the sum of the two largest Laplacian eigenvalues of G. In this paper, we determine the bicyclic graph with maximum S 2 ( G ) $S_{2}(G)$ among all bicyclic graphs of order n, which confirms the conjecture of Guan et al. (J. Inequal. Appl. 2014:242, 2014) for the case of bicyclic graphs.http://link.springer.com/article/10.1186/s13660-016-1235-5Laplacian eigenvaluelargest eigenvaluesum of eigenvaluebicyclic graph
collection DOAJ
language English
format Article
sources DOAJ
author Yirong Zheng
An Chang
Jianxi Li
Sa Rula
spellingShingle Yirong Zheng
An Chang
Jianxi Li
Sa Rula
Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
Journal of Inequalities and Applications
Laplacian eigenvalue
largest eigenvalue
sum of eigenvalue
bicyclic graph
author_facet Yirong Zheng
An Chang
Jianxi Li
Sa Rula
author_sort Yirong Zheng
title Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
title_short Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
title_full Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
title_fullStr Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
title_full_unstemmed Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
title_sort bicyclic graphs with maximum sum of the two largest laplacian eigenvalues
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2016-11-01
description Abstract Let G be a simple connected graph and S 2 ( G ) $S_{2}(G)$ be the sum of the two largest Laplacian eigenvalues of G. In this paper, we determine the bicyclic graph with maximum S 2 ( G ) $S_{2}(G)$ among all bicyclic graphs of order n, which confirms the conjecture of Guan et al. (J. Inequal. Appl. 2014:242, 2014) for the case of bicyclic graphs.
topic Laplacian eigenvalue
largest eigenvalue
sum of eigenvalue
bicyclic graph
url http://link.springer.com/article/10.1186/s13660-016-1235-5
work_keys_str_mv AT yirongzheng bicyclicgraphswithmaximumsumofthetwolargestlaplacianeigenvalues
AT anchang bicyclicgraphswithmaximumsumofthetwolargestlaplacianeigenvalues
AT jianxili bicyclicgraphswithmaximumsumofthetwolargestlaplacianeigenvalues
AT sarula bicyclicgraphswithmaximumsumofthetwolargestlaplacianeigenvalues
_version_ 1725763705656836096