Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
Abstract Let G be a simple connected graph and S 2 ( G ) $S_{2}(G)$ be the sum of the two largest Laplacian eigenvalues of G. In this paper, we determine the bicyclic graph with maximum S 2 ( G ) $S_{2}(G)$ among all bicyclic graphs of order n, which confirms the conjecture of Guan et al. (J. Inequa...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-11-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-1235-5 |
Summary: | Abstract Let G be a simple connected graph and S 2 ( G ) $S_{2}(G)$ be the sum of the two largest Laplacian eigenvalues of G. In this paper, we determine the bicyclic graph with maximum S 2 ( G ) $S_{2}(G)$ among all bicyclic graphs of order n, which confirms the conjecture of Guan et al. (J. Inequal. Appl. 2014:242, 2014) for the case of bicyclic graphs. |
---|---|
ISSN: | 1029-242X |