Computation of Rayleigh damping coefficient of a rectangular submerged floating tunnel (SFT)
Abstract The dynamic behaviors of the submerged floating tunnel, a buoyant structure of high slenderness, are a matter of concern since it is surrounded by the huge hazardous effects called hydrodynamic, seismic and functional action. Modal analysis and Rayleigh damping coefficients play a significa...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2020-04-01
|
Series: | SN Applied Sciences |
Subjects: | |
Online Access: | https://doi.org/10.1007/s42452-020-2629-z |
Summary: | Abstract The dynamic behaviors of the submerged floating tunnel, a buoyant structure of high slenderness, are a matter of concern since it is surrounded by the huge hazardous effects called hydrodynamic, seismic and functional action. Modal analysis and Rayleigh damping coefficients play a significant role in dynamic analysis, but it is not sufficiently simple to predict the reasonable damping coefficients named α and β. The present paper outlines the modal analysis and the calculation of Rayleigh damping coefficients that provide the natural frequencies, mode shapes, mode’s motion as well as coefficients α and β. To compute the Rayleigh damping coefficients, 2–10% damping to the critical damping has been assumed for this analytical study. For the analysis, an FEA-based software ANSYS is utilized successfully. It has been seen that the fundamental frequency and Rayleigh damping coefficients (α = 0.946 and β = 0.00022) of the SFT are reasonably high and it is under noticeable damping. |
---|---|
ISSN: | 2523-3963 2523-3971 |