Pavement Distress Detection with Deep Learning Using the Orthoframes Acquired by a Mobile Mapping System

The subject matter of this research article is automatic detection of pavement distress on highway roads using computer vision algorithms. Specifically, deep learning convolutional neural network models are employed towards the implementation of the detector. Source data for training the detector co...

Full description

Bibliographic Details
Main Authors: Andri Riid, Roland Lõuk, Rene Pihlak, Aleksei Tepljakov, Kristina Vassiljeva
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/22/4829
Description
Summary:The subject matter of this research article is automatic detection of pavement distress on highway roads using computer vision algorithms. Specifically, deep learning convolutional neural network models are employed towards the implementation of the detector. Source data for training the detector come in the form of orthoframes acquired by a mobile mapping system. Compared to our previous work, the orthoframes are generally of better quality, but more importantly, in this work, we introduce a manual preprocessing step: sets of orthoframes are carefully selected for training and manually digitized to ensure adequate performance of the detector. Pretrained convolutional neural networks are then fine-tuned for the problem of pavement distress detection. Corresponding experimental results are provided and analyzed and indicate a successful implementation of the detector.
ISSN:2076-3417