Locally graded groups with a condition on infinite subsets

Let $G$ be a group‎, ‎we say that $G$ satisfies the property $mathcal{T}(infty)$ provided that‎, ‎every infinite set of elements of $G$ contains elements $xneq y‎, ‎z$ such that $[x‎, ‎y‎, ‎z]=1=[y‎, ‎z‎, ‎x]=[z‎, ‎x‎, ‎y]$‎. ‎We denote by $mathcal{C}$ the class of all polycyclic groups‎, ‎$mathcal{...

Full description

Bibliographic Details
Main Authors: Asadollah Faramarzi Salles, Fatemeh Pazandeh Shanbehbazari
Format: Article
Language:English
Published: University of Isfahan 2018-12-01
Series:International Journal of Group Theory
Subjects:
Online Access:http://ijgt.ui.ac.ir/article_21234_67c122bc31064ada379ba0fa8178aec3.pdf
id doaj-2d7b9c96b83b4958adc1a5220e42af13
record_format Article
spelling doaj-2d7b9c96b83b4958adc1a5220e42af132020-11-25T00:26:48ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692018-12-01741710.22108/ijgt.2016.2123421234Locally graded groups with a condition on infinite subsetsAsadollah Faramarzi Salles0Fatemeh Pazandeh Shanbehbazari1Damghan UniversityDamghan UniversityLet $G$ be a group‎, ‎we say that $G$ satisfies the property $mathcal{T}(infty)$ provided that‎, ‎every infinite set of elements of $G$ contains elements $xneq y‎, ‎z$ such that $[x‎, ‎y‎, ‎z]=1=[y‎, ‎z‎, ‎x]=[z‎, ‎x‎, ‎y]$‎. ‎We denote by $mathcal{C}$ the class of all polycyclic groups‎, ‎$mathcal{S}$ the class of all soluble groups‎, ‎$mathcal{R}$ the class of all residually finite groups‎, ‎$mathcal{L}$ the class of all locally graded groups‎, ‎$mathcal{N}_2$ the class of all nilpotent group of class at most two‎, ‎and $mathcal{F}$ the class of all finite groups‎. ‎In this paper‎, ‎first we shall prove that if $G$ is a finitely generated locally graded group‎, ‎then $G$ satisfies $mathcal{T}(infty)$ if and only if $G/Z_2(G)$ is finite‎, ‎and then we shall conclude that if $G$ is a finitely generated group in $mathcal{T}(infty)$‎, ‎then‎ ‎[Ginmathcal{L}Leftrightarrow Ginmathcal{R}Leftrightarrow Ginmathcal{S}Leftrightarrow Ginmathcal{C}Leftrightarrow Ginmathcal{N}_2mathcal{F}.]‎http://ijgt.ui.ac.ir/article_21234_67c122bc31064ada379ba0fa8178aec3.pdf‎Finitely generated groups‎‎Residually finite groups‎‎Locally graded groups
collection DOAJ
language English
format Article
sources DOAJ
author Asadollah Faramarzi Salles
Fatemeh Pazandeh Shanbehbazari
spellingShingle Asadollah Faramarzi Salles
Fatemeh Pazandeh Shanbehbazari
Locally graded groups with a condition on infinite subsets
International Journal of Group Theory
‎Finitely generated groups‎
‎Residually finite groups‎
‎Locally graded groups
author_facet Asadollah Faramarzi Salles
Fatemeh Pazandeh Shanbehbazari
author_sort Asadollah Faramarzi Salles
title Locally graded groups with a condition on infinite subsets
title_short Locally graded groups with a condition on infinite subsets
title_full Locally graded groups with a condition on infinite subsets
title_fullStr Locally graded groups with a condition on infinite subsets
title_full_unstemmed Locally graded groups with a condition on infinite subsets
title_sort locally graded groups with a condition on infinite subsets
publisher University of Isfahan
series International Journal of Group Theory
issn 2251-7650
2251-7669
publishDate 2018-12-01
description Let $G$ be a group‎, ‎we say that $G$ satisfies the property $mathcal{T}(infty)$ provided that‎, ‎every infinite set of elements of $G$ contains elements $xneq y‎, ‎z$ such that $[x‎, ‎y‎, ‎z]=1=[y‎, ‎z‎, ‎x]=[z‎, ‎x‎, ‎y]$‎. ‎We denote by $mathcal{C}$ the class of all polycyclic groups‎, ‎$mathcal{S}$ the class of all soluble groups‎, ‎$mathcal{R}$ the class of all residually finite groups‎, ‎$mathcal{L}$ the class of all locally graded groups‎, ‎$mathcal{N}_2$ the class of all nilpotent group of class at most two‎, ‎and $mathcal{F}$ the class of all finite groups‎. ‎In this paper‎, ‎first we shall prove that if $G$ is a finitely generated locally graded group‎, ‎then $G$ satisfies $mathcal{T}(infty)$ if and only if $G/Z_2(G)$ is finite‎, ‎and then we shall conclude that if $G$ is a finitely generated group in $mathcal{T}(infty)$‎, ‎then‎ ‎[Ginmathcal{L}Leftrightarrow Ginmathcal{R}Leftrightarrow Ginmathcal{S}Leftrightarrow Ginmathcal{C}Leftrightarrow Ginmathcal{N}_2mathcal{F}.]‎
topic ‎Finitely generated groups‎
‎Residually finite groups‎
‎Locally graded groups
url http://ijgt.ui.ac.ir/article_21234_67c122bc31064ada379ba0fa8178aec3.pdf
work_keys_str_mv AT asadollahfaramarzisalles locallygradedgroupswithaconditiononinfinitesubsets
AT fatemehpazandehshanbehbazari locallygradedgroupswithaconditiononinfinitesubsets
_version_ 1725342453032026112