An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
In this paper, we gave an attack on RSA (Rivest⁻Shamir⁻Adleman) Cryptosystem when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>φ</mi> <mo stretchy="false">(</mo> <mi>N</mi>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Cryptography |
Subjects: | |
Online Access: | https://www.mdpi.com/2410-387X/2/4/36 |
id |
doaj-2d78cf87c730449090546d93790ea3a6 |
---|---|
record_format |
Article |
spelling |
doaj-2d78cf87c730449090546d93790ea3a62020-11-25T00:04:18ZengMDPI AGCryptography2410-387X2018-11-01243610.3390/cryptography2040036cryptography2040036An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based TechniquesPratha Anuradha Kameswari0Lambadi Jyotsna1Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh 530003, IndiaDepartment of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh 530003, IndiaIn this paper, we gave an attack on RSA (Rivest⁻Shamir⁻Adleman) Cryptosystem when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>φ</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> has small multiplicative inverse modulo <i>e</i> and the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mrow> </semantics> </math> </inline-formula> is of the form <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <i>n</i> is a given positive integer and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> are two suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for finding small roots of modular polynomial equations. When we compare this method with an approach using lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension. Employing the previous tools, we provide a new attack bound for the deciphering exponent when the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula> and performed an analysis with Boneh and Durfee’s deciphering exponent bound for appropriately small <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2410-387X/2/4/36RSACryptanalysislatticesLLL (Lenstra–Lenstra–Lovász) algorithmCoppersmith’s method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pratha Anuradha Kameswari Lambadi Jyotsna |
spellingShingle |
Pratha Anuradha Kameswari Lambadi Jyotsna An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques Cryptography RSA Cryptanalysis lattices LLL (Lenstra–Lenstra–Lovász) algorithm Coppersmith’s method |
author_facet |
Pratha Anuradha Kameswari Lambadi Jyotsna |
author_sort |
Pratha Anuradha Kameswari |
title |
An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques |
title_short |
An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques |
title_full |
An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques |
title_fullStr |
An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques |
title_full_unstemmed |
An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques |
title_sort |
attack bound for small multiplicative inverse of <i>φ</i>(<i>n</i>) mod <i>e</i> with a composed prime sum <i>p</i> + <i>q</i> using sublattice based techniques |
publisher |
MDPI AG |
series |
Cryptography |
issn |
2410-387X |
publishDate |
2018-11-01 |
description |
In this paper, we gave an attack on RSA (Rivest⁻Shamir⁻Adleman) Cryptosystem when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>φ</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> has small multiplicative inverse modulo <i>e</i> and the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mrow> </semantics> </math> </inline-formula> is of the form <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <i>n</i> is a given positive integer and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> are two suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for finding small roots of modular polynomial equations. When we compare this method with an approach using lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension. Employing the previous tools, we provide a new attack bound for the deciphering exponent when the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula> and performed an analysis with Boneh and Durfee’s deciphering exponent bound for appropriately small <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>. |
topic |
RSA Cryptanalysis lattices LLL (Lenstra–Lenstra–Lovász) algorithm Coppersmith’s method |
url |
https://www.mdpi.com/2410-387X/2/4/36 |
work_keys_str_mv |
AT prathaanuradhakameswari anattackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques AT lambadijyotsna anattackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques AT prathaanuradhakameswari attackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques AT lambadijyotsna attackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques |
_version_ |
1725430190455128064 |