An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques

In this paper, we gave an attack on RSA (Rivest&#8315;Shamir&#8315;Adleman) Cryptosystem when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#966;</mi> <mo stretchy="false">(</mo> <mi>N</mi>...

Full description

Bibliographic Details
Main Authors: Pratha Anuradha Kameswari, Lambadi Jyotsna
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Cryptography
Subjects:
RSA
Online Access:https://www.mdpi.com/2410-387X/2/4/36
id doaj-2d78cf87c730449090546d93790ea3a6
record_format Article
spelling doaj-2d78cf87c730449090546d93790ea3a62020-11-25T00:04:18ZengMDPI AGCryptography2410-387X2018-11-01243610.3390/cryptography2040036cryptography2040036An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based TechniquesPratha Anuradha Kameswari0Lambadi Jyotsna1Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh 530003, IndiaDepartment of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh 530003, IndiaIn this paper, we gave an attack on RSA (Rivest&#8315;Shamir&#8315;Adleman) Cryptosystem when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#966;</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> has small multiplicative inverse modulo <i>e</i> and the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mrow> </semantics> </math> </inline-formula> is of the form <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <i>n</i> is a given positive integer and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> are two suitably small unknown integers using sublattice reduction techniques and Coppersmith&#8217;s methods for finding small roots of modular polynomial equations. When we compare this method with an approach using lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension. Employing the previous tools, we provide a new attack bound for the deciphering exponent when the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula> and performed an analysis with Boneh and Durfee&#8217;s deciphering exponent bound for appropriately small <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2410-387X/2/4/36RSACryptanalysislatticesLLL (Lenstra–Lenstra–Lovász) algorithmCoppersmith’s method
collection DOAJ
language English
format Article
sources DOAJ
author Pratha Anuradha Kameswari
Lambadi Jyotsna
spellingShingle Pratha Anuradha Kameswari
Lambadi Jyotsna
An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
Cryptography
RSA
Cryptanalysis
lattices
LLL (Lenstra–Lenstra–Lovász) algorithm
Coppersmith’s method
author_facet Pratha Anuradha Kameswari
Lambadi Jyotsna
author_sort Pratha Anuradha Kameswari
title An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
title_short An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
title_full An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
title_fullStr An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
title_full_unstemmed An Attack Bound for Small Multiplicative Inverse of <i>φ</i>(<i>N</i>) mod <i>e</i> with a Composed Prime Sum <i>p</i> + <i>q</i> Using Sublattice Based Techniques
title_sort attack bound for small multiplicative inverse of <i>φ</i>(<i>n</i>) mod <i>e</i> with a composed prime sum <i>p</i> + <i>q</i> using sublattice based techniques
publisher MDPI AG
series Cryptography
issn 2410-387X
publishDate 2018-11-01
description In this paper, we gave an attack on RSA (Rivest&#8315;Shamir&#8315;Adleman) Cryptosystem when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#966;</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> has small multiplicative inverse modulo <i>e</i> and the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mrow> </semantics> </math> </inline-formula> is of the form <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <i>n</i> is a given positive integer and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> are two suitably small unknown integers using sublattice reduction techniques and Coppersmith&#8217;s methods for finding small roots of modular polynomial equations. When we compare this method with an approach using lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension. Employing the previous tools, we provide a new attack bound for the deciphering exponent when the prime sum <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula> and performed an analysis with Boneh and Durfee&#8217;s deciphering exponent bound for appropriately small <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula>.
topic RSA
Cryptanalysis
lattices
LLL (Lenstra–Lenstra–Lovász) algorithm
Coppersmith’s method
url https://www.mdpi.com/2410-387X/2/4/36
work_keys_str_mv AT prathaanuradhakameswari anattackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques
AT lambadijyotsna anattackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques
AT prathaanuradhakameswari attackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques
AT lambadijyotsna attackboundforsmallmultiplicativeinverseofiphiinimodieiwithacomposedprimesumipiiqiusingsublatticebasedtechniques
_version_ 1725430190455128064