Changing the rotational direction of a wind turbine under veering inflow: a parameter study
<p>All current-day wind-turbine blades rotate in clockwise direction as seen from an upstream perspective. The choice of the rotational direction impacts the wake if the wind profile changes direction with height. Here, we investigate the respective wakes for veering and backing winds in both...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-11-01
|
Series: | Wind Energy Science |
Online Access: | https://wes.copernicus.org/articles/5/1623/2020/wes-5-1623-2020.pdf |
id |
doaj-2d74b92e9b48482684caeaf11446864d |
---|---|
record_format |
Article |
spelling |
doaj-2d74b92e9b48482684caeaf11446864d2020-11-25T04:10:46ZengCopernicus PublicationsWind Energy Science2366-74432366-74512020-11-0151623164410.5194/wes-5-1623-2020Changing the rotational direction of a wind turbine under veering inflow: a parameter studyA. Englberger0J. K. Lundquist1J. K. Lundquist2A. Dörnbrack3German Aerospace Center, Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, USANational Renewable Energy Laboratory, Golden, Colorado, USAGerman Aerospace Center, Institute of Atmospheric Physics, Oberpfaffenhofen, Germany<p>All current-day wind-turbine blades rotate in clockwise direction as seen from an upstream perspective. The choice of the rotational direction impacts the wake if the wind profile changes direction with height. Here, we investigate the respective wakes for veering and backing winds in both hemispheres by means of large-eddy simulations. We quantify the sensitivity of the wake to the strength of the wind veer, the wind speed, and the rotational frequency of the rotor in the Northern Hemisphere. A veering wind in combination with counterclockwise-rotating blades results in a larger streamwise velocity output, a larger spanwise wake width, and a larger wake deflection angle at the same downwind distance in comparison to a clockwise-rotating turbine in the Northern Hemisphere. In the Southern Hemisphere, the same wake characteristics occur if the turbine rotates counterclockwise. These downwind differences in the wake result from the amplification or weakening or reversion of the spanwise wind component due to the effect of the superimposed vortex of the rotor rotation on the inflow's shear. An increase in the directional shear or the rotational frequency of the rotor under veering wind conditions increases the difference in the spanwise wake width and the wake deflection angle between clockwise- and counterclockwise-rotating actuators, whereas the wind speed lacks a significant impact.</p>https://wes.copernicus.org/articles/5/1623/2020/wes-5-1623-2020.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Englberger J. K. Lundquist J. K. Lundquist A. Dörnbrack |
spellingShingle |
A. Englberger J. K. Lundquist J. K. Lundquist A. Dörnbrack Changing the rotational direction of a wind turbine under veering inflow: a parameter study Wind Energy Science |
author_facet |
A. Englberger J. K. Lundquist J. K. Lundquist A. Dörnbrack |
author_sort |
A. Englberger |
title |
Changing the rotational direction of a wind turbine under veering inflow: a parameter study |
title_short |
Changing the rotational direction of a wind turbine under veering inflow: a parameter study |
title_full |
Changing the rotational direction of a wind turbine under veering inflow: a parameter study |
title_fullStr |
Changing the rotational direction of a wind turbine under veering inflow: a parameter study |
title_full_unstemmed |
Changing the rotational direction of a wind turbine under veering inflow: a parameter study |
title_sort |
changing the rotational direction of a wind turbine under veering inflow: a parameter study |
publisher |
Copernicus Publications |
series |
Wind Energy Science |
issn |
2366-7443 2366-7451 |
publishDate |
2020-11-01 |
description |
<p>All current-day wind-turbine blades rotate in clockwise direction as seen from an upstream perspective. The choice of the rotational direction
impacts the wake if the wind profile changes direction with height. Here, we investigate the respective wakes for veering and backing winds in both
hemispheres by means of large-eddy simulations. We quantify the sensitivity of the wake to the strength of the wind veer, the wind speed, and the
rotational frequency of the rotor in the Northern Hemisphere. A veering wind in combination with counterclockwise-rotating blades results in a
larger streamwise velocity output, a larger spanwise wake width, and a larger wake deflection angle at the same downwind distance in comparison to a
clockwise-rotating turbine in the Northern Hemisphere. In the Southern Hemisphere, the same wake characteristics occur if the turbine rotates
counterclockwise. These downwind differences in the wake result from the amplification or weakening or reversion of the spanwise wind component due to
the effect of the superimposed vortex of the rotor rotation on the inflow's shear. An increase in the directional shear or the rotational frequency
of the rotor under veering wind conditions increases the difference in the spanwise wake width and the wake deflection angle between clockwise- and
counterclockwise-rotating actuators, whereas the wind speed lacks a significant impact.</p> |
url |
https://wes.copernicus.org/articles/5/1623/2020/wes-5-1623-2020.pdf |
work_keys_str_mv |
AT aenglberger changingtherotationaldirectionofawindturbineunderveeringinflowaparameterstudy AT jklundquist changingtherotationaldirectionofawindturbineunderveeringinflowaparameterstudy AT jklundquist changingtherotationaldirectionofawindturbineunderveeringinflowaparameterstudy AT adornbrack changingtherotationaldirectionofawindturbineunderveeringinflowaparameterstudy |
_version_ |
1724419349727412224 |