Existence of solutions to quasilinear Schrodinger equations with indefinite potential
In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(x)u-(|u| ^2)''u=f(u) $$ on $\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2015-04-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2015/91/abstr.html |
id |
doaj-2d3930ae03ac4ddc9d9def14e7c63dc1 |
---|---|
record_format |
Article |
spelling |
doaj-2d3930ae03ac4ddc9d9def14e7c63dc12020-11-24T22:31:20ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-04-01201591,19Existence of solutions to quasilinear Schrodinger equations with indefinite potentialZupei Shen0Zhiqing Han1 Dalian Univ. of Technology, China Dalian Univ. of Technology, China In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(x)u-(|u| ^2)''u=f(u) $$ on $\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.http://ejde.math.txstate.edu/Volumes/2015/91/abstr.htmlQuasilinear Schrodinger equationlocal linkingfountain theoremindefinite potential |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zupei Shen Zhiqing Han |
spellingShingle |
Zupei Shen Zhiqing Han Existence of solutions to quasilinear Schrodinger equations with indefinite potential Electronic Journal of Differential Equations Quasilinear Schrodinger equation local linking fountain theorem indefinite potential |
author_facet |
Zupei Shen Zhiqing Han |
author_sort |
Zupei Shen |
title |
Existence of solutions to quasilinear Schrodinger equations with indefinite potential |
title_short |
Existence of solutions to quasilinear Schrodinger equations with indefinite potential |
title_full |
Existence of solutions to quasilinear Schrodinger equations with indefinite potential |
title_fullStr |
Existence of solutions to quasilinear Schrodinger equations with indefinite potential |
title_full_unstemmed |
Existence of solutions to quasilinear Schrodinger equations with indefinite potential |
title_sort |
existence of solutions to quasilinear schrodinger equations with indefinite potential |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2015-04-01 |
description |
In this article, we study the existence and multiplicity of solutions
of the quasilinear Schrodinger equation
$$
-u''+V(x)u-(|u| ^2)''u=f(u)
$$
on $\mathbb{R}$, where the potential $V$ allows sign changing and the
nonlinearity satisfies conditions weaker than the classical
Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain
theorem, we obtain the existence and multiplicity of solutions for the equation. |
topic |
Quasilinear Schrodinger equation local linking fountain theorem indefinite potential |
url |
http://ejde.math.txstate.edu/Volumes/2015/91/abstr.html |
work_keys_str_mv |
AT zupeishen existenceofsolutionstoquasilinearschrodingerequationswithindefinitepotential AT zhiqinghan existenceofsolutionstoquasilinearschrodingerequationswithindefinitepotential |
_version_ |
1725737576111800320 |