Existence of solutions to quasilinear Schrodinger equations with indefinite potential

In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(x)u-(|u| ^2)''u=f(u) $$ on $\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical...

Full description

Bibliographic Details
Main Authors: Zupei Shen, Zhiqing Han
Format: Article
Language:English
Published: Texas State University 2015-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/91/abstr.html
id doaj-2d3930ae03ac4ddc9d9def14e7c63dc1
record_format Article
spelling doaj-2d3930ae03ac4ddc9d9def14e7c63dc12020-11-24T22:31:20ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-04-01201591,19Existence of solutions to quasilinear Schrodinger equations with indefinite potentialZupei Shen0Zhiqing Han1 Dalian Univ. of Technology, China Dalian Univ. of Technology, China In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(x)u-(|u| ^2)''u=f(u) $$ on $\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.http://ejde.math.txstate.edu/Volumes/2015/91/abstr.htmlQuasilinear Schrodinger equationlocal linkingfountain theoremindefinite potential
collection DOAJ
language English
format Article
sources DOAJ
author Zupei Shen
Zhiqing Han
spellingShingle Zupei Shen
Zhiqing Han
Existence of solutions to quasilinear Schrodinger equations with indefinite potential
Electronic Journal of Differential Equations
Quasilinear Schrodinger equation
local linking
fountain theorem
indefinite potential
author_facet Zupei Shen
Zhiqing Han
author_sort Zupei Shen
title Existence of solutions to quasilinear Schrodinger equations with indefinite potential
title_short Existence of solutions to quasilinear Schrodinger equations with indefinite potential
title_full Existence of solutions to quasilinear Schrodinger equations with indefinite potential
title_fullStr Existence of solutions to quasilinear Schrodinger equations with indefinite potential
title_full_unstemmed Existence of solutions to quasilinear Schrodinger equations with indefinite potential
title_sort existence of solutions to quasilinear schrodinger equations with indefinite potential
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2015-04-01
description In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(x)u-(|u| ^2)''u=f(u) $$ on $\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.
topic Quasilinear Schrodinger equation
local linking
fountain theorem
indefinite potential
url http://ejde.math.txstate.edu/Volumes/2015/91/abstr.html
work_keys_str_mv AT zupeishen existenceofsolutionstoquasilinearschrodingerequationswithindefinitepotential
AT zhiqinghan existenceofsolutionstoquasilinearschrodingerequationswithindefinitepotential
_version_ 1725737576111800320